|
import random |
|
import numpy as np |
|
import streamlit as st |
|
import plotly.graph_objects as go |
|
from plotly.subplots import make_subplots |
|
import time |
|
from collections import deque |
|
import threading |
|
|
|
class Organelle: |
|
def __init__(self, type): |
|
self.type = type |
|
|
|
class Cell: |
|
def __init__(self, x, y, cell_type="prokaryote"): |
|
self.x = x |
|
self.y = y |
|
self.energy = 100 |
|
self.cell_type = cell_type |
|
self.organelles = set() |
|
self.size = 1 |
|
self.color = "lightblue" |
|
self.division_threshold = 150 |
|
self.update_properties() |
|
|
|
def update_properties(self): |
|
if self.cell_type == "early_eukaryote": |
|
self.organelles.add("nucleus") |
|
self.color = "green" |
|
self.size = 2 |
|
elif self.cell_type == "advanced_eukaryote": |
|
self.organelles.update(["nucleus", "mitochondria"]) |
|
self.color = "red" |
|
self.size = 3 |
|
elif self.cell_type == "plant_like": |
|
self.organelles.update(["nucleus", "mitochondria", "chloroplast"]) |
|
self.color = "darkgreen" |
|
self.size = 4 |
|
elif self.cell_type == "complete": |
|
self.organelles.update(["nucleus", "mitochondria", "chloroplast", "endoplasmic_reticulum", "golgi_apparatus"]) |
|
self.color = "purple" |
|
self.size = 5 |
|
|
|
def move(self, environment): |
|
dx, dy = random.uniform(-1, 1), random.uniform(-1, 1) |
|
self.x = max(0, min(environment.width - 1, self.x + dx)) |
|
self.y = max(0, min(environment.height - 1, self.y + dy)) |
|
self.energy -= 0.5 * self.size |
|
|
|
def feed(self, environment): |
|
base_energy = environment.grid[int(self.y)][int(self.x)] * 0.1 |
|
if "chloroplast" in self.organelles: |
|
base_energy += environment.light_level * 2 |
|
self.energy += base_energy |
|
environment.grid[int(self.y)][int(self.x)] *= 0.9 |
|
|
|
def can_divide(self): |
|
return self.energy > self.division_threshold |
|
|
|
def divide(self): |
|
if self.can_divide(): |
|
self.energy /= 2 |
|
new_cell = Cell(self.x, self.y, self.cell_type) |
|
new_cell.organelles = self.organelles.copy() |
|
return new_cell |
|
return None |
|
|
|
def can_merge(self, other): |
|
return (self.cell_type == other.cell_type and |
|
random.random() < 0.01) |
|
|
|
def merge(self, other): |
|
new_cell_type = self.cell_type |
|
if self.cell_type == "prokaryote": |
|
new_cell_type = "early_eukaryote" |
|
elif self.cell_type == "early_eukaryote": |
|
new_cell_type = "advanced_eukaryote" |
|
elif self.cell_type == "advanced_eukaryote": |
|
new_cell_type = "plant_like" |
|
elif self.cell_type == "plant_like": |
|
new_cell_type = "complete" |
|
|
|
new_cell = Cell((self.x + other.x) / 2, (self.y + other.y) / 2, new_cell_type) |
|
new_cell.energy = self.energy + other.energy |
|
new_cell.organelles = self.organelles.union(other.organelles) |
|
new_cell.update_properties() |
|
return new_cell |
|
|
|
class Environment: |
|
def __init__(self, width, height, effects): |
|
self.width = width |
|
self.height = height |
|
self.grid = np.random.rand(height, width) * 10 |
|
self.light_level = 5 |
|
self.cells = [] |
|
self.time = 0 |
|
self.population_history = { |
|
"prokaryote": [], "early_eukaryote": [], |
|
"advanced_eukaryote": [], "plant_like": [], "complete": [] |
|
} |
|
self.effects = effects |
|
|
|
def add_cell(self, cell): |
|
self.cells.append(cell) |
|
|
|
def update(self): |
|
self.time += 1 |
|
self.grid += np.random.rand(self.height, self.width) * 0.1 |
|
self.light_level = 5 + np.sin(self.time / 100) * 2 |
|
|
|
new_cells = [] |
|
cells_to_remove = [] |
|
|
|
for cell in self.cells: |
|
cell.move(self) |
|
cell.feed(self) |
|
|
|
if cell.energy <= 0: |
|
cells_to_remove.append(cell) |
|
elif cell.can_divide(): |
|
new_cell = cell.divide() |
|
if new_cell: |
|
new_cells.append(new_cell) |
|
|
|
|
|
for i, cell1 in enumerate(self.cells): |
|
for cell2 in self.cells[i+1:]: |
|
if cell1.can_merge(cell2): |
|
new_cell = cell1.merge(cell2) |
|
new_cells.append(new_cell) |
|
cells_to_remove.extend([cell1, cell2]) |
|
|
|
|
|
if self.effects['radiation']: |
|
self.apply_radiation() |
|
if self.effects['predation']: |
|
self.apply_predation() |
|
if self.effects['symbiosis']: |
|
self.apply_symbiosis() |
|
|
|
|
|
self.cells.extend(new_cells) |
|
self.cells = [cell for cell in self.cells if cell not in cells_to_remove] |
|
|
|
|
|
for cell_type in self.population_history.keys(): |
|
count = len([cell for cell in self.cells if cell.cell_type == cell_type]) |
|
self.population_history[cell_type].append(count) |
|
|
|
def apply_radiation(self): |
|
for cell in self.cells: |
|
if random.random() < 0.01: |
|
cell.energy *= 0.8 |
|
if random.random() < 0.5: |
|
cell.organelles.add(random.choice(["nucleus", "mitochondria", "chloroplast", "endoplasmic_reticulum", "golgi_apparatus"])) |
|
else: |
|
if cell.organelles: |
|
cell.organelles.remove(random.choice(list(cell.organelles))) |
|
cell.update_properties() |
|
|
|
def apply_predation(self): |
|
for i, predator in enumerate(self.cells): |
|
if predator.cell_type in ["advanced_eukaryote", "plant_like", "complete"]: |
|
for prey in self.cells[i+1:]: |
|
if prey.cell_type in ["prokaryote", "early_eukaryote"] and random.random() < 0.05: |
|
predator.energy += prey.energy * 0.5 |
|
self.cells.remove(prey) |
|
|
|
def apply_symbiosis(self): |
|
for i, cell1 in enumerate(self.cells): |
|
for cell2 in self.cells[i+1:]: |
|
if cell1.cell_type != cell2.cell_type and random.random() < 0.01: |
|
shared_energy = (cell1.energy + cell2.energy) * 0.1 |
|
cell1.energy += shared_energy |
|
cell2.energy += shared_energy |
|
|
|
def get_visualization_data(self): |
|
cell_data = {cell_type: {"x": [], "y": [], "size": []} for cell_type in self.population_history.keys()} |
|
colors = {"prokaryote": "lightblue", "early_eukaryote": "green", "advanced_eukaryote": "red", "plant_like": "darkgreen", "complete": "purple"} |
|
|
|
for cell in self.cells: |
|
cell_data[cell.cell_type]["x"].append(cell.x) |
|
cell_data[cell.cell_type]["y"].append(cell.y) |
|
cell_data[cell.cell_type]["size"].append(cell.size * 3) |
|
|
|
return cell_data, self.population_history, colors |
|
|
|
def setup_figure(env): |
|
cell_types = list(env.population_history.keys()) |
|
fig = make_subplots(rows=2, cols=2, |
|
subplot_titles=("Cell Distribution", "Total Population", |
|
"Population by Cell Type", "Organelle Distribution"), |
|
vertical_spacing=0.1, |
|
horizontal_spacing=0.05) |
|
|
|
cell_data, population_history, colors = env.get_visualization_data() |
|
|
|
|
|
for cell_type, data in cell_data.items(): |
|
fig.add_trace(go.Scatter( |
|
x=data["x"], y=data["y"], mode='markers', |
|
marker=dict(color=colors[cell_type], size=data["size"]), |
|
name=cell_type |
|
), row=1, col=1) |
|
|
|
|
|
total_population = [sum(counts) for counts in zip(*population_history.values())] |
|
fig.add_trace(go.Scatter(y=total_population, mode='lines', name="Total"), row=1, col=2) |
|
|
|
|
|
for cell_type, counts in population_history.items(): |
|
fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type, line=dict(color=colors[cell_type])), row=2, col=1) |
|
|
|
|
|
organelle_counts = {"nucleus": 0, "mitochondria": 0, "chloroplast": 0, "endoplasmic_reticulum": 0, "golgi_apparatus": 0} |
|
for cell in env.cells: |
|
for organelle in cell.organelles: |
|
organelle_counts[organelle] += 1 |
|
|
|
fig.add_trace(go.Bar(x=list(organelle_counts.keys()), y=list(organelle_counts.values()), name="Organelles"), row=2, col=2) |
|
|
|
fig.update_xaxes(title_text="X", row=1, col=1) |
|
fig.update_yaxes(title_text="Y", row=1, col=1) |
|
fig.update_xaxes(title_text="Time", row=1, col=2) |
|
fig.update_yaxes(title_text="Population", row=1, col=2) |
|
fig.update_xaxes(title_text="Time", row=2, col=1) |
|
fig.update_yaxes(title_text="Population", row=2, col=1) |
|
fig.update_xaxes(title_text="Organelle", row=2, col=2) |
|
fig.update_yaxes(title_text="Count", row=2, col=2) |
|
|
|
fig.update_layout(height=800, width=1200, title_text="Advanced Cell Evolution Simulation") |
|
|
|
return fig |
|
|
|
def format_number(num): |
|
if num >= 1_000_000: |
|
return f"{num/1_000_000:.1f}M" |
|
elif num >= 1_000: |
|
return f"{num/1_000:.1f}K" |
|
else: |
|
return str(num) |
|
|
|
def update_chart(): |
|
global fig |
|
|
|
|
|
fig.data = [] |
|
|
|
|
|
cell_types = [cell.cell_type for cell in st.session_state.env.cells] |
|
x_positions = [cell.x for cell in st.session_state.env.cells] |
|
y_positions = [cell.y for cell in st.session_state.env.cells] |
|
|
|
fig.add_trace(go.Scatter(x=x_positions, y=y_positions, mode='markers', |
|
marker=dict(color=[colors[ct] for ct in cell_types]), |
|
text=cell_types, hoverinfo='text'), row=1, col=1) |
|
|
|
|
|
for cell_type, counts in st.session_state.env.population_history.items(): |
|
fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type, |
|
line=dict(color=colors[cell_type])), row=1, col=2) |
|
|
|
|
|
for cell_type, counts in st.session_state.env.population_history.items(): |
|
fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type, |
|
line=dict(color=colors[cell_type])), row=2, col=1) |
|
|
|
|
|
organelle_counts = {"nucleus": 0, "mitochondria": 0, "chloroplast": 0, |
|
"endoplasmic_reticulum": 0, "golgi_apparatus": 0} |
|
for cell in st.session_state.env.cells: |
|
for organelle in cell.organelles: |
|
organelle_counts[organelle] += 1 |
|
|
|
fig.add_trace(go.Bar(x=list(organelle_counts.keys()), y=list(organelle_counts.values()), |
|
name="Organelles"), row=2, col=2) |
|
|
|
|
|
fig.update_xaxes(title_text="X", row=1, col=1) |
|
fig.update_yaxes(title_text="Y", row=1, col=1) |
|
fig.update_xaxes(title_text="Time", row=1, col=2) |
|
fig.update_yaxes(title_text="Population", row=1, col=2) |
|
fig.update_xaxes(title_text="Time", row=2, col=1) |
|
fig.update_yaxes(title_text="Population", row=2, col=1) |
|
fig.update_xaxes(title_text="Organelle", row=2, col=2) |
|
fig.update_yaxes(title_text="Count", row=2, col=2) |
|
|
|
fig.update_layout(height=800, width=1200, title_text="Advanced Cell Evolution Simulation") |
|
|
|
|
|
chart_placeholder.plotly_chart(fig) |
|
|
|
|
|
st.sidebar.header("Simulation Controls") |
|
initial_cells = st.sidebar.slider("Initial number of cells", 10, 500, 200) |
|
update_interval = st.sidebar.slider("Update interval (seconds)", 0.01, 1.0, 0.05) |
|
|
|
st.sidebar.header("Environmental Effects") |
|
radiation = st.sidebar.checkbox("Radiation") |
|
predation = st.sidebar.checkbox("Predation") |
|
symbiosis = st.sidebar.checkbox("Symbiosis") |
|
|
|
effects = { |
|
"radiation": radiation, |
|
"predation": predation, |
|
"symbiosis": symbiosis |
|
} |
|
|
|
|
|
st.sidebar.header("Live Statistics") |
|
total_cells_text = st.sidebar.empty() |
|
cell_type_breakdown = st.sidebar.empty() |
|
dominant_type_text = st.sidebar.empty() |
|
avg_energy_text = st.sidebar.empty() |
|
total_merges_text = st.sidebar.empty() |
|
|
|
|
|
st.sidebar.header("Event Log") |
|
event_log = deque(maxlen=10) |
|
event_log_text = st.sidebar.empty() |
|
|
|
|
|
chart_placeholder = st.empty() |
|
|
|
|
|
|
|
if 'running' not in st.session_state: |
|
st.session_state.running = False |
|
if 'total_merges' not in st.session_state: |
|
st.session_state.total_merges = 0 |
|
if 'env' not in st.session_state: |
|
st.session_state.env = None |
|
if 'fig' not in st.session_state: |
|
st.session_state.fig = None |
|
|
|
def start_simulation(): |
|
st.session_state.running = True |
|
if st.session_state.env is None: |
|
st.session_state.env = Environment(100, 100, effects) |
|
for _ in range(initial_cells): |
|
cell = Cell(random.uniform(0, st.session_state.env.width), random.uniform(0, st.session_state.env.height)) |
|
st.session_state.env.add_cell(cell) |
|
st.session_state.fig = setup_figure(st.session_state.env) |
|
|
|
def stop_simulation(): |
|
st.session_state.running = False |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
start_button = st.button("Start Simulation", on_click=start_simulation) |
|
|
|
with col2: |
|
stop_button = st.button("Stop Simulation", on_click=stop_simulation) |
|
|
|
|
|
simulation_container = st.empty() |
|
|
|
if st.session_state.running and st.session_state.env is not None: |
|
with simulation_container.container(): |
|
for _ in range(4): |
|
initial_cell_count = len(st.session_state.env.cells) |
|
st.session_state.env.update() |
|
final_cell_count = len(st.session_state.env.cells) |
|
|
|
|
|
if final_cell_count < initial_cell_count: |
|
merges = initial_cell_count - final_cell_count |
|
st.session_state.total_merges += merges |
|
event_log.appendleft(f"Time {st.session_state.env.time}: {merges} cell merges occurred") |
|
|
|
update_chart() |
|
update_statistics() |
|
|
|
time.sleep(update_interval) |
|
st.experimental_rerun() |
|
|
|
if not st.session_state.running: |
|
st.write("Simulation stopped. Click 'Start Simulation' to run again.") |