Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from plotly.subplots import make_subplots
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
class Organelle:
|
8 |
+
def __init__(self, type):
|
9 |
+
self.type = type # e.g., "nucleus", "mitochondria", "chloroplast"
|
10 |
+
|
11 |
+
class Cell:
|
12 |
+
def __init__(self, x, y, cell_type="prokaryote"):
|
13 |
+
self.x = x
|
14 |
+
self.y = y
|
15 |
+
self.energy = 100
|
16 |
+
self.cell_type = cell_type
|
17 |
+
self.organelles = []
|
18 |
+
self.size = 1
|
19 |
+
self.color = "blue"
|
20 |
+
self.division_threshold = 150
|
21 |
+
|
22 |
+
if cell_type == "prokaryote":
|
23 |
+
self.color = "lightblue"
|
24 |
+
elif cell_type == "early_eukaryote":
|
25 |
+
self.organelles.append(Organelle("nucleus"))
|
26 |
+
self.color = "green"
|
27 |
+
self.size = 2
|
28 |
+
elif cell_type == "advanced_eukaryote":
|
29 |
+
self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria")])
|
30 |
+
self.color = "red"
|
31 |
+
self.size = 3
|
32 |
+
elif cell_type == "plant_like":
|
33 |
+
self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria"), Organelle("chloroplast")])
|
34 |
+
self.color = "darkgreen"
|
35 |
+
self.size = 4
|
36 |
+
|
37 |
+
def move(self, environment):
|
38 |
+
dx = random.uniform(-1, 1)
|
39 |
+
dy = random.uniform(-1, 1)
|
40 |
+
self.x = max(0, min(environment.width - 1, self.x + dx))
|
41 |
+
self.y = max(0, min(environment.height - 1, self.y + dy))
|
42 |
+
self.energy -= 0.5 * self.size
|
43 |
+
|
44 |
+
def feed(self, environment):
|
45 |
+
if "chloroplast" in [org.type for org in self.organelles]:
|
46 |
+
# Photosynthesis
|
47 |
+
self.energy += environment.light_level * 2
|
48 |
+
else:
|
49 |
+
# Consume environmental nutrients
|
50 |
+
self.energy += environment.grid[int(self.y)][int(self.x)] * 0.1
|
51 |
+
environment.grid[int(self.y)][int(self.x)] *= 0.9
|
52 |
+
|
53 |
+
def can_divide(self):
|
54 |
+
return self.energy > self.division_threshold
|
55 |
+
|
56 |
+
def divide(self):
|
57 |
+
if self.can_divide():
|
58 |
+
self.energy /= 2
|
59 |
+
return Cell(self.x, self.y, self.cell_type)
|
60 |
+
return None
|
61 |
+
|
62 |
+
def can_fuse(self, other):
|
63 |
+
return (self.cell_type == "prokaryote" and other.cell_type == "prokaryote" and
|
64 |
+
random.random() < 0.001) # 0.1% chance of fusion
|
65 |
+
|
66 |
+
def fuse(self, other):
|
67 |
+
new_cell = Cell(
|
68 |
+
(self.x + other.x) / 2,
|
69 |
+
(self.y + other.y) / 2,
|
70 |
+
"early_eukaryote"
|
71 |
+
)
|
72 |
+
new_cell.energy = self.energy + other.energy
|
73 |
+
return new_cell
|
74 |
+
|
75 |
+
class Environment:
|
76 |
+
def __init__(self, width, height):
|
77 |
+
self.width = width
|
78 |
+
self.height = height
|
79 |
+
self.grid = np.random.rand(height, width) * 10 # Nutrient distribution
|
80 |
+
self.light_level = 5 # Ambient light level
|
81 |
+
self.cells = []
|
82 |
+
self.time = 0
|
83 |
+
|
84 |
+
def add_cell(self, cell):
|
85 |
+
self.cells.append(cell)
|
86 |
+
|
87 |
+
def update(self):
|
88 |
+
self.time += 1
|
89 |
+
|
90 |
+
# Update environment
|
91 |
+
self.grid += np.random.rand(self.height, self.width) * 0.1
|
92 |
+
self.light_level = 5 + np.sin(self.time / 100) * 2 # Fluctuating light levels
|
93 |
+
|
94 |
+
new_cells = []
|
95 |
+
cells_to_remove = []
|
96 |
+
|
97 |
+
for cell in self.cells:
|
98 |
+
cell.move(self)
|
99 |
+
cell.feed(self)
|
100 |
+
|
101 |
+
if cell.energy <= 0:
|
102 |
+
cells_to_remove.append(cell)
|
103 |
+
elif cell.can_divide():
|
104 |
+
new_cell = cell.divide()
|
105 |
+
if new_cell:
|
106 |
+
new_cells.append(new_cell)
|
107 |
+
|
108 |
+
# Handle cell fusion
|
109 |
+
for i, cell1 in enumerate(self.cells):
|
110 |
+
for cell2 in self.cells[i+1:]:
|
111 |
+
if cell1.can_fuse(cell2):
|
112 |
+
new_cell = cell1.fuse(cell2)
|
113 |
+
new_cells.append(new_cell)
|
114 |
+
cells_to_remove.extend([cell1, cell2])
|
115 |
+
|
116 |
+
# Add new cells and remove dead/fused cells
|
117 |
+
self.cells.extend(new_cells)
|
118 |
+
self.cells = [cell for cell in self.cells if cell not in cells_to_remove]
|
119 |
+
|
120 |
+
# Introduce mutations
|
121 |
+
for cell in self.cells:
|
122 |
+
if random.random() < 0.0001: # 0.01% chance of mutation
|
123 |
+
if cell.cell_type == "early_eukaryote":
|
124 |
+
cell.cell_type = "advanced_eukaryote"
|
125 |
+
cell.organelles.append(Organelle("mitochondria"))
|
126 |
+
cell.color = "red"
|
127 |
+
cell.size = 3
|
128 |
+
elif cell.cell_type == "advanced_eukaryote" and random.random() < 0.5:
|
129 |
+
cell.cell_type = "plant_like"
|
130 |
+
cell.organelles.append(Organelle("chloroplast"))
|
131 |
+
cell.color = "darkgreen"
|
132 |
+
cell.size = 4
|
133 |
+
|
134 |
+
def visualize(self):
|
135 |
+
fig = make_subplots(rows=1, cols=2, subplot_titles=("Cell Distribution", "Population Over Time"))
|
136 |
+
|
137 |
+
# Cell distribution
|
138 |
+
cell_types = set(cell.cell_type for cell in self.cells)
|
139 |
+
for cell_type in cell_types:
|
140 |
+
x = [cell.x for cell in self.cells if cell.cell_type == cell_type]
|
141 |
+
y = [cell.y for cell in self.cells if cell.cell_type == cell_type]
|
142 |
+
color = next(cell.color for cell in self.cells if cell.cell_type == cell_type)
|
143 |
+
size = next(cell.size * 3 for cell in self.cells if cell.cell_type == cell_type)
|
144 |
+
fig.add_trace(go.Scatter(x=x, y=y, mode='markers', marker=dict(color=color, size=size),
|
145 |
+
name=cell_type), row=1, col=1)
|
146 |
+
|
147 |
+
fig.update_xaxes(title_text="X", row=1, col=1)
|
148 |
+
fig.update_yaxes(title_text="Y", row=1, col=1)
|
149 |
+
|
150 |
+
# Population over time
|
151 |
+
population_counts = {
|
152 |
+
"prokaryote": [],
|
153 |
+
"early_eukaryote": [],
|
154 |
+
"advanced_eukaryote": [],
|
155 |
+
"plant_like": []
|
156 |
+
}
|
157 |
+
|
158 |
+
for cell_type in population_counts:
|
159 |
+
count = len([cell for cell in self.cells if cell.cell_type == cell_type])
|
160 |
+
population_counts[cell_type].append(count)
|
161 |
+
|
162 |
+
for cell_type, counts in population_counts.items():
|
163 |
+
fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type), row=1, col=2)
|
164 |
+
|
165 |
+
fig.update_xaxes(title_text="Time", row=1, col=2)
|
166 |
+
fig.update_yaxes(title_text="Population", row=1, col=2)
|
167 |
+
|
168 |
+
fig.update_layout(height=600, width=1200,
|
169 |
+
title_text=f"Cell Evolution Simulation (Time: {self.time})")
|
170 |
+
return fig
|
171 |
+
|
172 |
+
def run_simulation(num_steps, initial_cells):
|
173 |
+
env = Environment(100, 100)
|
174 |
+
|
175 |
+
# Add initial cells
|
176 |
+
for _ in range(initial_cells):
|
177 |
+
cell = Cell(random.uniform(0, env.width), random.uniform(0, env.height))
|
178 |
+
env.add_cell(cell)
|
179 |
+
|
180 |
+
# Run simulation
|
181 |
+
for step in range(num_steps):
|
182 |
+
env.update()
|
183 |
+
if step % 10 == 0: # Visualize every 10 steps
|
184 |
+
yield env.visualize()
|
185 |
+
|
186 |
+
# Streamlit app
|
187 |
+
st.title("Cell Evolution Simulation")
|
188 |
+
|
189 |
+
num_steps = st.slider("Number of simulation steps", 100, 1000, 500)
|
190 |
+
initial_cells = st.slider("Initial number of cells", 10, 100, 50)
|
191 |
+
|
192 |
+
if st.button("Run Simulation"):
|
193 |
+
simulation = run_simulation(num_steps, initial_cells)
|
194 |
+
|
195 |
+
# Create a placeholder for the chart
|
196 |
+
chart_placeholder = st.empty()
|
197 |
+
|
198 |
+
# Update the chart for each step
|
199 |
+
for chart in simulation:
|
200 |
+
chart_placeholder.plotly_chart(chart, use_container_width=True)
|
201 |
+
|
202 |
+
st.write("Simulation complete!")
|