import random import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots import streamlit as st class Organelle: def __init__(self, type): self.type = type # e.g., "nucleus", "mitochondria", "chloroplast" class Cell: def __init__(self, x, y, cell_type="prokaryote"): self.x = x self.y = y self.energy = 100 self.cell_type = cell_type self.organelles = [] self.size = 1 self.color = "blue" self.division_threshold = 150 if cell_type == "prokaryote": self.color = "lightblue" elif cell_type == "early_eukaryote": self.organelles.append(Organelle("nucleus")) self.color = "green" self.size = 2 elif cell_type == "advanced_eukaryote": self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria")]) self.color = "red" self.size = 3 elif cell_type == "plant_like": self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria"), Organelle("chloroplast")]) self.color = "darkgreen" self.size = 4 def move(self, environment): dx = random.uniform(-1, 1) dy = random.uniform(-1, 1) self.x = max(0, min(environment.width - 1, self.x + dx)) self.y = max(0, min(environment.height - 1, self.y + dy)) self.energy -= 0.5 * self.size def feed(self, environment): if "chloroplast" in [org.type for org in self.organelles]: # Photosynthesis self.energy += environment.light_level * 2 else: # Consume environmental nutrients self.energy += environment.grid[int(self.y)][int(self.x)] * 0.1 environment.grid[int(self.y)][int(self.x)] *= 0.9 def can_divide(self): return self.energy > self.division_threshold def divide(self): if self.can_divide(): self.energy /= 2 return Cell(self.x, self.y, self.cell_type) return None def can_fuse(self, other): return (self.cell_type == "prokaryote" and other.cell_type == "prokaryote" and random.random() < 0.001) # 0.1% chance of fusion def fuse(self, other): new_cell = Cell( (self.x + other.x) / 2, (self.y + other.y) / 2, "early_eukaryote" ) new_cell.energy = self.energy + other.energy return new_cell class Environment: def __init__(self, width, height): self.width = width self.height = height self.grid = np.random.rand(height, width) * 10 # Nutrient distribution self.light_level = 5 # Ambient light level self.cells = [] self.time = 0 def add_cell(self, cell): self.cells.append(cell) def update(self): self.time += 1 # Update environment self.grid += np.random.rand(self.height, self.width) * 0.1 self.light_level = 5 + np.sin(self.time / 100) * 2 # Fluctuating light levels new_cells = [] cells_to_remove = [] for cell in self.cells: cell.move(self) cell.feed(self) if cell.energy <= 0: cells_to_remove.append(cell) elif cell.can_divide(): new_cell = cell.divide() if new_cell: new_cells.append(new_cell) # Handle cell fusion for i, cell1 in enumerate(self.cells): for cell2 in self.cells[i+1:]: if cell1.can_fuse(cell2): new_cell = cell1.fuse(cell2) new_cells.append(new_cell) cells_to_remove.extend([cell1, cell2]) # Add new cells and remove dead/fused cells self.cells.extend(new_cells) self.cells = [cell for cell in self.cells if cell not in cells_to_remove] # Introduce mutations for cell in self.cells: if random.random() < 0.0001: # 0.01% chance of mutation if cell.cell_type == "early_eukaryote": cell.cell_type = "advanced_eukaryote" cell.organelles.append(Organelle("mitochondria")) cell.color = "red" cell.size = 3 elif cell.cell_type == "advanced_eukaryote" and random.random() < 0.5: cell.cell_type = "plant_like" cell.organelles.append(Organelle("chloroplast")) cell.color = "darkgreen" cell.size = 4 def visualize(self): fig = make_subplots(rows=1, cols=2, subplot_titles=("Cell Distribution", "Population Over Time")) def setup_figure(env): fig = make_subplots(rows=1, cols=2, subplot_titles=("Cell Distribution", "Population Over Time")) # Cell distribution for cell_type, data in env.get_visualization_data()[0].items(): fig.add_trace(go.Scatter( x=data["x"], y=data["y"], mode='markers', marker=dict(color=data["color"], size=data["size"]), name=cell_type ), row=1, col=1) # Population over time for cell_type, counts in env.population_history.items(): fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type), row=1, col=2) fig.update_xaxes(title_text="X", row=1, col=1) fig.update_yaxes(title_text="Y", row=1, col=1) fig.update_xaxes(title_text="Time", row=1, col=2) fig.update_yaxes(title_text="Population", row=1, col=2) fig.update_layout(height=600, width=1200, title_text="Cell Evolution Simulation") return fig # Streamlit app st.title("Cell Evolution Simulation") num_steps = st.slider("Number of simulation steps", 100, 1000, 500) initial_cells = st.slider("Initial number of cells", 10, 100, 50) update_interval = st.slider("Update interval (milliseconds)", 100, 1000, 200) if st.button("Run Simulation"): env = Environment(100, 100) # Add initial cells for _ in range(initial_cells): cell = Cell(random.uniform(0, env.width), random.uniform(0, env.height)) env.add_cell(cell) # Set up the figure fig = setup_figure(env) chart = st.plotly_chart(fig, use_container_width=True) # Run simulation for step in range(num_steps): env.update() # Update the figure data with fig.batch_update(): cell_data, population_history = env.get_visualization_data() for i, (cell_type, data) in enumerate(cell_data.items()): fig.data[i].x = data["x"] fig.data[i].y = data["y"] fig.data[i].marker.size = data["size"] for i, (cell_type, counts) in enumerate(population_history.items()): fig.data[i+4].y = counts # +4 because we have 4 cell types in the first subplot fig.layout.title.text = f"Cell Evolution Simulation (Time: {env.time})" # Update the chart chart.plotly_chart(fig, use_container_width=True) time.sleep(update_interval / 1000) # Convert milliseconds to seconds st.write("Simulation complete!")