|
import torch |
|
|
|
|
|
def eval_depth(pred, target): |
|
assert pred.shape == target.shape |
|
|
|
thresh = torch.max((target / pred), (pred / target)) |
|
|
|
d1 = torch.sum(thresh < 1.25).float() / len(thresh) |
|
d2 = torch.sum(thresh < 1.25 ** 2).float() / len(thresh) |
|
d3 = torch.sum(thresh < 1.25 ** 3).float() / len(thresh) |
|
|
|
diff = pred - target |
|
diff_log = torch.log(pred) - torch.log(target) |
|
|
|
abs_rel = torch.mean(torch.abs(diff) / target) |
|
sq_rel = torch.mean(torch.pow(diff, 2) / target) |
|
|
|
rmse = torch.sqrt(torch.mean(torch.pow(diff, 2))) |
|
rmse_log = torch.sqrt(torch.mean(torch.pow(diff_log , 2))) |
|
|
|
log10 = torch.mean(torch.abs(torch.log10(pred) - torch.log10(target))) |
|
silog = torch.sqrt(torch.pow(diff_log, 2).mean() - 0.5 * torch.pow(diff_log.mean(), 2)) |
|
|
|
return {'d1': d1.item(), 'd2': d2.item(), 'd3': d3.item(), 'abs_rel': abs_rel.item(), 'sq_rel': sq_rel.item(), |
|
'rmse': rmse.item(), 'rmse_log': rmse_log.item(), 'log10':log10.item(), 'silog':silog.item()} |