|
import os |
|
import torch |
|
import spaces |
|
import matplotlib |
|
|
|
import numpy as np |
|
import gradio as gr |
|
|
|
from PIL import Image |
|
from transformers import pipeline |
|
from huggingface_hub import hf_hub_download |
|
from gradio_imageslider import ImageSlider |
|
|
|
from depth_anything_v2.dpt import DepthAnythingV2 |
|
from loguru import logger |
|
|
|
css = """ |
|
#img-display-container { |
|
max-height: 100vh; |
|
} |
|
#img-display-input { |
|
max-height: 80vh; |
|
} |
|
#img-display-output { |
|
max-height: 80vh; |
|
} |
|
#download { |
|
height: 62px; |
|
} |
|
""" |
|
|
|
title = "# Depth Anything: Watch V1 and V2 side by side." |
|
description1 = """Please refer to **Depth Anything V2** [paper](https://arxiv.org/abs/2406.09414) for more details.""" |
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
DEFAULT_V2_MODEL_NAME = "Base" |
|
DEFAULT_V1_MODEL_NAME = "Base" |
|
|
|
cmap = matplotlib.colormaps.get_cmap('Spectral_r') |
|
|
|
|
|
|
|
|
|
depth_anything_v1_name2checkpoint = { |
|
"Small": "LiheYoung/depth-anything-small-hf", |
|
"Base": "LiheYoung/depth-anything-base-hf", |
|
"Large": "LiheYoung/depth-anything-large-hf", |
|
} |
|
|
|
depth_anything_v1_pipelines = {} |
|
|
|
|
|
|
|
|
|
depth_anything_v2_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} |
|
} |
|
depth_anything_v2_encoder2name = { |
|
'vits': 'Small', |
|
'vitb': 'Base', |
|
'vitl': 'Large', |
|
|
|
} |
|
depth_anything_v2_name2encoder = {v: k for k, v in depth_anything_v2_encoder2name.items()} |
|
|
|
depth_anything_v2_models = {} |
|
|
|
|
|
|
|
def get_v1_pipe(model_name): |
|
return pipeline(task="depth-estimation", model=depth_anything_v1_name2checkpoint[model_name], device=DEVICE) |
|
|
|
|
|
def get_v2_model(model_name): |
|
encoder = depth_anything_v2_name2encoder[model_name] |
|
model = DepthAnythingV2(**depth_anything_v2_configs[encoder]) |
|
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model") |
|
state_dict = torch.load(filepath, map_location="cpu") |
|
model.load_state_dict(state_dict) |
|
model = model.to(DEVICE).eval() |
|
return model |
|
|
|
|
|
@spaces.GPU |
|
def predict_depth_v1(image, model_name): |
|
if model_name not in depth_anything_v1_pipelines: |
|
depth_anything_v1_pipelines[model_name] = get_v1_pipe(model_name) |
|
pipe = depth_anything_v1_pipelines[model_name] |
|
return pipe(image) |
|
|
|
|
|
@spaces.GPU |
|
def predict_depth_v2(image, model_name): |
|
if model_name not in depth_anything_v2_models: |
|
depth_anything_v2_models[model_name] = get_v2_model(model_name) |
|
model = depth_anything_v2_models[model_name] |
|
return model.infer_image(image) |
|
|
|
|
|
def compute_depth_map_v2(image, model_select: str): |
|
depth = predict_depth_v2(image[:, :, ::-1], model_select) |
|
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 |
|
depth = depth.astype(np.uint8) |
|
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) |
|
return colored_depth |
|
|
|
|
|
def compute_depth_map_v1(image, model_select): |
|
pil_image = Image.fromarray(image) |
|
depth = predict_depth_v1(pil_image, model_select) |
|
depth = np.array(depth["depth"]).astype(np.uint8) |
|
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) |
|
return colored_depth |
|
|
|
|
|
def on_submit(image, model_v1_select, model_v2_select): |
|
logger.info(f"Computing depth for V1 model: {model_v1_select} and V2 model: {model_v2_select}") |
|
colored_depth_v1 = compute_depth_map_v1(image, model_v1_select) |
|
colored_depth_v2 = compute_depth_map_v2(image, model_v2_select) |
|
return colored_depth_v1, colored_depth_v2 |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description1) |
|
gr.Markdown("### Depth Prediction demo") |
|
with gr.Row(): |
|
model_select_v1 = gr.Dropdown(label="Depth Anything V1 Model", choices=list(depth_anything_v1_name2checkpoint.keys()), value=DEFAULT_V1_MODEL_NAME) |
|
model_select_v2 = gr.Dropdown(label="Depth Anything V2 Model", choices=list(depth_anything_v2_encoder2name.values()), value=DEFAULT_V2_MODEL_NAME) |
|
with gr.Row(): |
|
gr.Markdown() |
|
gr.Markdown("Depth Maps: V1 <-> V2") |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') |
|
depth_image_slider = ImageSlider(elem_id='img-display-output', position=0.5) |
|
|
|
submit = gr.Button(value="Compute Depth") |
|
submit.click(on_submit, inputs=[input_image, model_select_v1, model_select_v2], outputs=[depth_image_slider]) |
|
|
|
example_files = os.listdir('assets/examples') |
|
example_files.sort() |
|
example_files = [os.path.join('assets/examples', filename) for filename in example_files] |
|
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider], fn=on_submit) |
|
|
|
|
|
if __name__ == '__main__': |
|
demo.queue().launch(share=True) |
|
|