|
import cv2 |
|
import math |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): |
|
"""Rezise the sample to ensure the given size. Keeps aspect ratio. |
|
|
|
Args: |
|
sample (dict): sample |
|
size (tuple): image size |
|
|
|
Returns: |
|
tuple: new size |
|
""" |
|
shape = list(sample["disparity"].shape) |
|
|
|
if shape[0] >= size[0] and shape[1] >= size[1]: |
|
return sample |
|
|
|
scale = [0, 0] |
|
scale[0] = size[0] / shape[0] |
|
scale[1] = size[1] / shape[1] |
|
|
|
scale = max(scale) |
|
|
|
shape[0] = math.ceil(scale * shape[0]) |
|
shape[1] = math.ceil(scale * shape[1]) |
|
|
|
|
|
sample["image"] = cv2.resize( |
|
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method |
|
) |
|
|
|
sample["disparity"] = cv2.resize( |
|
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST |
|
) |
|
sample["mask"] = cv2.resize( |
|
sample["mask"].astype(np.float32), |
|
tuple(shape[::-1]), |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
sample["mask"] = sample["mask"].astype(bool) |
|
|
|
return tuple(shape) |
|
|
|
|
|
class Resize(object): |
|
"""Resize sample to given size (width, height). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
width, |
|
height, |
|
resize_target=True, |
|
keep_aspect_ratio=False, |
|
ensure_multiple_of=1, |
|
resize_method="lower_bound", |
|
image_interpolation_method=cv2.INTER_AREA, |
|
): |
|
"""Init. |
|
|
|
Args: |
|
width (int): desired output width |
|
height (int): desired output height |
|
resize_target (bool, optional): |
|
True: Resize the full sample (image, mask, target). |
|
False: Resize image only. |
|
Defaults to True. |
|
keep_aspect_ratio (bool, optional): |
|
True: Keep the aspect ratio of the input sample. |
|
Output sample might not have the given width and height, and |
|
resize behaviour depends on the parameter 'resize_method'. |
|
Defaults to False. |
|
ensure_multiple_of (int, optional): |
|
Output width and height is constrained to be multiple of this parameter. |
|
Defaults to 1. |
|
resize_method (str, optional): |
|
"lower_bound": Output will be at least as large as the given size. |
|
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) |
|
"minimal": Scale as least as possible. (Output size might be smaller than given size.) |
|
Defaults to "lower_bound". |
|
""" |
|
self.__width = width |
|
self.__height = height |
|
|
|
self.__resize_target = resize_target |
|
self.__keep_aspect_ratio = keep_aspect_ratio |
|
self.__multiple_of = ensure_multiple_of |
|
self.__resize_method = resize_method |
|
self.__image_interpolation_method = image_interpolation_method |
|
|
|
def constrain_to_multiple_of(self, x, min_val=0, max_val=None): |
|
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) |
|
|
|
if max_val is not None and y > max_val: |
|
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int) |
|
|
|
if y < min_val: |
|
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int) |
|
|
|
return y |
|
|
|
def get_size(self, width, height): |
|
|
|
scale_height = self.__height / height |
|
scale_width = self.__width / width |
|
|
|
if self.__keep_aspect_ratio: |
|
if self.__resize_method == "lower_bound": |
|
|
|
if scale_width > scale_height: |
|
|
|
scale_height = scale_width |
|
else: |
|
|
|
scale_width = scale_height |
|
elif self.__resize_method == "upper_bound": |
|
|
|
if scale_width < scale_height: |
|
|
|
scale_height = scale_width |
|
else: |
|
|
|
scale_width = scale_height |
|
elif self.__resize_method == "minimal": |
|
|
|
if abs(1 - scale_width) < abs(1 - scale_height): |
|
|
|
scale_height = scale_width |
|
else: |
|
|
|
scale_width = scale_height |
|
else: |
|
raise ValueError( |
|
f"resize_method {self.__resize_method} not implemented" |
|
) |
|
|
|
if self.__resize_method == "lower_bound": |
|
new_height = self.constrain_to_multiple_of( |
|
scale_height * height, min_val=self.__height |
|
) |
|
new_width = self.constrain_to_multiple_of( |
|
scale_width * width, min_val=self.__width |
|
) |
|
elif self.__resize_method == "upper_bound": |
|
new_height = self.constrain_to_multiple_of( |
|
scale_height * height, max_val=self.__height |
|
) |
|
new_width = self.constrain_to_multiple_of( |
|
scale_width * width, max_val=self.__width |
|
) |
|
elif self.__resize_method == "minimal": |
|
new_height = self.constrain_to_multiple_of(scale_height * height) |
|
new_width = self.constrain_to_multiple_of(scale_width * width) |
|
else: |
|
raise ValueError(f"resize_method {self.__resize_method} not implemented") |
|
|
|
return (new_width, new_height) |
|
|
|
def __call__(self, sample): |
|
width, height = self.get_size( |
|
sample["image"].shape[1], sample["image"].shape[0] |
|
) |
|
|
|
|
|
sample["image"] = cv2.resize( |
|
sample["image"], |
|
(width, height), |
|
interpolation=self.__image_interpolation_method, |
|
) |
|
|
|
if self.__resize_target: |
|
if "disparity" in sample: |
|
sample["disparity"] = cv2.resize( |
|
sample["disparity"], |
|
(width, height), |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
|
|
if "depth" in sample: |
|
sample["depth"] = cv2.resize( |
|
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST |
|
) |
|
|
|
if "semseg_mask" in sample: |
|
|
|
|
|
|
|
sample["semseg_mask"] = F.interpolate(torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode='nearest').numpy()[0, 0] |
|
|
|
if "mask" in sample: |
|
sample["mask"] = cv2.resize( |
|
sample["mask"].astype(np.float32), |
|
(width, height), |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
|
|
|
|
|
|
return sample |
|
|
|
|
|
class NormalizeImage(object): |
|
"""Normlize image by given mean and std. |
|
""" |
|
|
|
def __init__(self, mean, std): |
|
self.__mean = mean |
|
self.__std = std |
|
|
|
def __call__(self, sample): |
|
sample["image"] = (sample["image"] - self.__mean) / self.__std |
|
|
|
return sample |
|
|
|
|
|
class PrepareForNet(object): |
|
"""Prepare sample for usage as network input. |
|
""" |
|
|
|
def __init__(self): |
|
pass |
|
|
|
def __call__(self, sample): |
|
image = np.transpose(sample["image"], (2, 0, 1)) |
|
sample["image"] = np.ascontiguousarray(image).astype(np.float32) |
|
|
|
if "mask" in sample: |
|
sample["mask"] = sample["mask"].astype(np.float32) |
|
sample["mask"] = np.ascontiguousarray(sample["mask"]) |
|
|
|
if "depth" in sample: |
|
depth = sample["depth"].astype(np.float32) |
|
sample["depth"] = np.ascontiguousarray(depth) |
|
|
|
if "semseg_mask" in sample: |
|
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32) |
|
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"]) |
|
|
|
return sample |
|
|
|
|
|
class Crop(object): |
|
"""Crop sample for batch-wise training. Image is of shape CxHxW |
|
""" |
|
|
|
def __init__(self, size): |
|
if isinstance(size, int): |
|
self.size = (size, size) |
|
else: |
|
self.size = size |
|
|
|
def __call__(self, sample): |
|
h, w = sample['image'].shape[-2:] |
|
assert h >= self.size[0] and w >= self.size[1], 'Wrong size' |
|
|
|
h_start = np.random.randint(0, h - self.size[0] + 1) |
|
w_start = np.random.randint(0, w - self.size[1] + 1) |
|
h_end = h_start + self.size[0] |
|
w_end = w_start + self.size[1] |
|
|
|
sample['image'] = sample['image'][:, h_start: h_end, w_start: w_end] |
|
|
|
if "depth" in sample: |
|
sample["depth"] = sample["depth"][h_start: h_end, w_start: w_end] |
|
|
|
if "mask" in sample: |
|
sample["mask"] = sample["mask"][h_start: h_end, w_start: w_end] |
|
|
|
if "semseg_mask" in sample: |
|
sample["semseg_mask"] = sample["semseg_mask"][h_start: h_end, w_start: w_end] |
|
|
|
return sample |