|
|
|
|
|
|
|
|
|
import argparse |
|
import cv2 |
|
import glob |
|
import numpy as np |
|
import open3d as o3d |
|
import os |
|
from PIL import Image |
|
import torch |
|
|
|
from depth_anything_v2.dpt import DepthAnythingV2 |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--encoder', default='vitl', type=str, choices=['vits', 'vitb', 'vitl', 'vitg']) |
|
parser.add_argument('--load-from', default='', type=str) |
|
parser.add_argument('--max-depth', default=20, type=float) |
|
|
|
parser.add_argument('--img-path', type=str) |
|
parser.add_argument('--outdir', type=str, default='./vis_pointcloud') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
FL = 715.0873 |
|
FY = 784 * 0.6 |
|
FX = 784 * 0.6 |
|
NYU_DATA = False |
|
FINAL_HEIGHT = 518 |
|
FINAL_WIDTH = 518 |
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' |
|
|
|
model_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} |
|
} |
|
|
|
depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth}) |
|
depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu')) |
|
depth_anything = depth_anything.to(DEVICE).eval() |
|
|
|
if os.path.isfile(args.img_path): |
|
if args.img_path.endswith('txt'): |
|
with open(args.img_path, 'r') as f: |
|
filenames = f.read().splitlines() |
|
else: |
|
filenames = [args.img_path] |
|
else: |
|
filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True) |
|
|
|
os.makedirs(args.outdir, exist_ok=True) |
|
|
|
for k, filename in enumerate(filenames): |
|
print(f'Progress {k+1}/{len(filenames)}: {filename}') |
|
|
|
color_image = Image.open(filename).convert('RGB') |
|
|
|
image = cv2.imread(filename) |
|
pred = depth_anything.infer_image(image, FINAL_HEIGHT) |
|
|
|
|
|
resized_color_image = color_image.resize((FINAL_WIDTH, FINAL_HEIGHT), Image.LANCZOS) |
|
resized_pred = Image.fromarray(pred).resize((FINAL_WIDTH, FINAL_HEIGHT), Image.NEAREST) |
|
|
|
focal_length_x, focal_length_y = (FX, FY) if not NYU_DATA else (FL, FL) |
|
x, y = np.meshgrid(np.arange(FINAL_WIDTH), np.arange(FINAL_HEIGHT)) |
|
x = (x - FINAL_WIDTH / 2) / focal_length_x |
|
y = (y - FINAL_HEIGHT / 2) / focal_length_y |
|
z = np.array(resized_pred) |
|
points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3) |
|
colors = np.array(resized_color_image).reshape(-1, 3) / 255.0 |
|
|
|
pcd = o3d.geometry.PointCloud() |
|
pcd.points = o3d.utility.Vector3dVector(points) |
|
pcd.colors = o3d.utility.Vector3dVector(colors) |
|
o3d.io.write_point_cloud(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + ".ply"), pcd) |