|
import argparse |
|
import logging |
|
import os |
|
import pprint |
|
import random |
|
|
|
import warnings |
|
import numpy as np |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
import torch.distributed as dist |
|
from torch.utils.data import DataLoader |
|
from torch.optim import AdamW |
|
import torch.nn.functional as F |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
from dataset.hypersim import Hypersim |
|
from dataset.kitti import KITTI |
|
from dataset.vkitti2 import VKITTI2 |
|
from depth_anything_v2.dpt import DepthAnythingV2 |
|
from util.dist_helper import setup_distributed |
|
from util.loss import SiLogLoss |
|
from util.metric import eval_depth |
|
from util.utils import init_log |
|
|
|
|
|
parser = argparse.ArgumentParser(description='Depth Anything V2 for Metric Depth Estimation') |
|
|
|
parser.add_argument('--encoder', default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg']) |
|
parser.add_argument('--dataset', default='hypersim', choices=['hypersim', 'vkitti']) |
|
parser.add_argument('--img-size', default=518, type=int) |
|
parser.add_argument('--min-depth', default=0.001, type=float) |
|
parser.add_argument('--max-depth', default=20, type=float) |
|
parser.add_argument('--epochs', default=40, type=int) |
|
parser.add_argument('--bs', default=2, type=int) |
|
parser.add_argument('--lr', default=0.000005, type=float) |
|
parser.add_argument('--pretrained-from', type=str) |
|
parser.add_argument('--save-path', type=str, required=True) |
|
parser.add_argument('--local-rank', default=0, type=int) |
|
parser.add_argument('--port', default=None, type=int) |
|
|
|
|
|
def main(): |
|
args = parser.parse_args() |
|
|
|
warnings.simplefilter('ignore', np.RankWarning) |
|
|
|
logger = init_log('global', logging.INFO) |
|
logger.propagate = 0 |
|
|
|
rank, world_size = setup_distributed(port=args.port) |
|
|
|
if rank == 0: |
|
all_args = {**vars(args), 'ngpus': world_size} |
|
logger.info('{}\n'.format(pprint.pformat(all_args))) |
|
writer = SummaryWriter(args.save_path) |
|
|
|
cudnn.enabled = True |
|
cudnn.benchmark = True |
|
|
|
size = (args.img_size, args.img_size) |
|
if args.dataset == 'hypersim': |
|
trainset = Hypersim('dataset/splits/hypersim/train.txt', 'train', size=size) |
|
elif args.dataset == 'vkitti': |
|
trainset = VKITTI2('dataset/splits/vkitti2/train.txt', 'train', size=size) |
|
else: |
|
raise NotImplementedError |
|
trainsampler = torch.utils.data.distributed.DistributedSampler(trainset) |
|
trainloader = DataLoader(trainset, batch_size=args.bs, pin_memory=True, num_workers=4, drop_last=True, sampler=trainsampler) |
|
|
|
if args.dataset == 'hypersim': |
|
valset = Hypersim('dataset/splits/hypersim/val.txt', 'val', size=size) |
|
elif args.dataset == 'vkitti': |
|
valset = KITTI('dataset/splits/kitti/val.txt', 'val', size=size) |
|
else: |
|
raise NotImplementedError |
|
valsampler = torch.utils.data.distributed.DistributedSampler(valset) |
|
valloader = DataLoader(valset, batch_size=1, pin_memory=True, num_workers=4, drop_last=True, sampler=valsampler) |
|
|
|
local_rank = int(os.environ["LOCAL_RANK"]) |
|
|
|
model_configs = { |
|
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, |
|
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, |
|
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, |
|
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} |
|
} |
|
model = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth}) |
|
|
|
if args.pretrained_from: |
|
model.load_state_dict({k: v for k, v in torch.load(args.pretrained_from, map_location='cpu').items() if 'pretrained' in k}, strict=False) |
|
|
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) |
|
model.cuda(local_rank) |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], broadcast_buffers=False, |
|
output_device=local_rank, find_unused_parameters=True) |
|
|
|
criterion = SiLogLoss().cuda(local_rank) |
|
|
|
optimizer = AdamW([{'params': [param for name, param in model.named_parameters() if 'pretrained' in name], 'lr': args.lr}, |
|
{'params': [param for name, param in model.named_parameters() if 'pretrained' not in name], 'lr': args.lr * 10.0}], |
|
lr=args.lr, betas=(0.9, 0.999), weight_decay=0.01) |
|
|
|
total_iters = args.epochs * len(trainloader) |
|
|
|
previous_best = {'d1': 0, 'd2': 0, 'd3': 0, 'abs_rel': 100, 'sq_rel': 100, 'rmse': 100, 'rmse_log': 100, 'log10': 100, 'silog': 100} |
|
|
|
for epoch in range(args.epochs): |
|
if rank == 0: |
|
logger.info('===========> Epoch: {:}/{:}, d1: {:.3f}, d2: {:.3f}, d3: {:.3f}'.format(epoch, args.epochs, previous_best['d1'], previous_best['d2'], previous_best['d3'])) |
|
logger.info('===========> Epoch: {:}/{:}, abs_rel: {:.3f}, sq_rel: {:.3f}, rmse: {:.3f}, rmse_log: {:.3f}, ' |
|
'log10: {:.3f}, silog: {:.3f}'.format( |
|
epoch, args.epochs, previous_best['abs_rel'], previous_best['sq_rel'], previous_best['rmse'], |
|
previous_best['rmse_log'], previous_best['log10'], previous_best['silog'])) |
|
|
|
trainloader.sampler.set_epoch(epoch + 1) |
|
|
|
model.train() |
|
total_loss = 0 |
|
|
|
for i, sample in enumerate(trainloader): |
|
optimizer.zero_grad() |
|
|
|
img, depth, valid_mask = sample['image'].cuda(), sample['depth'].cuda(), sample['valid_mask'].cuda() |
|
|
|
if random.random() < 0.5: |
|
img = img.flip(-1) |
|
depth = depth.flip(-1) |
|
valid_mask = valid_mask.flip(-1) |
|
|
|
pred = model(img) |
|
|
|
loss = criterion(pred, depth, (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth)) |
|
|
|
loss.backward() |
|
optimizer.step() |
|
|
|
total_loss += loss.item() |
|
|
|
iters = epoch * len(trainloader) + i |
|
|
|
lr = args.lr * (1 - iters / total_iters) ** 0.9 |
|
|
|
optimizer.param_groups[0]["lr"] = lr |
|
optimizer.param_groups[1]["lr"] = lr * 10.0 |
|
|
|
if rank == 0: |
|
writer.add_scalar('train/loss', loss.item(), iters) |
|
|
|
if rank == 0 and i % 100 == 0: |
|
logger.info('Iter: {}/{}, LR: {:.7f}, Loss: {:.3f}'.format(i, len(trainloader), optimizer.param_groups[0]['lr'], loss.item())) |
|
|
|
model.eval() |
|
|
|
results = {'d1': torch.tensor([0.0]).cuda(), 'd2': torch.tensor([0.0]).cuda(), 'd3': torch.tensor([0.0]).cuda(), |
|
'abs_rel': torch.tensor([0.0]).cuda(), 'sq_rel': torch.tensor([0.0]).cuda(), 'rmse': torch.tensor([0.0]).cuda(), |
|
'rmse_log': torch.tensor([0.0]).cuda(), 'log10': torch.tensor([0.0]).cuda(), 'silog': torch.tensor([0.0]).cuda()} |
|
nsamples = torch.tensor([0.0]).cuda() |
|
|
|
for i, sample in enumerate(valloader): |
|
|
|
img, depth, valid_mask = sample['image'].cuda().float(), sample['depth'].cuda()[0], sample['valid_mask'].cuda()[0] |
|
|
|
with torch.no_grad(): |
|
pred = model(img) |
|
pred = F.interpolate(pred[:, None], depth.shape[-2:], mode='bilinear', align_corners=True)[0, 0] |
|
|
|
valid_mask = (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth) |
|
|
|
if valid_mask.sum() < 10: |
|
continue |
|
|
|
cur_results = eval_depth(pred[valid_mask], depth[valid_mask]) |
|
|
|
for k in results.keys(): |
|
results[k] += cur_results[k] |
|
nsamples += 1 |
|
|
|
torch.distributed.barrier() |
|
|
|
for k in results.keys(): |
|
dist.reduce(results[k], dst=0) |
|
dist.reduce(nsamples, dst=0) |
|
|
|
if rank == 0: |
|
logger.info('==========================================================================================') |
|
logger.info('{:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}'.format(*tuple(results.keys()))) |
|
logger.info('{:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}'.format(*tuple([(v / nsamples).item() for v in results.values()]))) |
|
logger.info('==========================================================================================') |
|
print() |
|
|
|
for name, metric in results.items(): |
|
writer.add_scalar(f'eval/{name}', (metric / nsamples).item(), epoch) |
|
|
|
for k in results.keys(): |
|
if k in ['d1', 'd2', 'd3']: |
|
previous_best[k] = max(previous_best[k], (results[k] / nsamples).item()) |
|
else: |
|
previous_best[k] = min(previous_best[k], (results[k] / nsamples).item()) |
|
|
|
if rank == 0: |
|
checkpoint = { |
|
'model': model.state_dict(), |
|
'optimizer': optimizer.state_dict(), |
|
'epoch': epoch, |
|
'previous_best': previous_best, |
|
} |
|
torch.save(checkpoint, os.path.join(args.save_path, 'latest.pth')) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |