Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
-
|
5 |
-
-
|
6 |
-
-
|
7 |
-
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
11 |
"""
|
12 |
|
13 |
import os
|
@@ -38,7 +40,6 @@ def _guess_mime(path: str) -> str:
|
|
38 |
return mimetypes.guess_type(path)[0] or "image/jpeg"
|
39 |
|
40 |
def nvcf_upload_asset(image_path: str, description: str = "Chat image") -> str:
|
41 |
-
# 1) авторизация на загрузку
|
42 |
auth = requests.post(
|
43 |
NVCF_ASSETS_URL,
|
44 |
headers={
|
@@ -52,7 +53,6 @@ def nvcf_upload_asset(image_path: str, description: str = "Chat image") -> str:
|
|
52 |
auth.raise_for_status()
|
53 |
up_url = auth.json()["uploadUrl"]
|
54 |
asset_id = str(auth.json()["assetId"])
|
55 |
-
# 2) загрузка бинарника
|
56 |
with open(image_path, "rb") as f:
|
57 |
put = requests.put(
|
58 |
up_url,
|
@@ -66,43 +66,93 @@ def nvcf_upload_asset(image_path: str, description: str = "Chat image") -> str:
|
|
66 |
put.raise_for_status()
|
67 |
return asset_id
|
68 |
|
69 |
-
def
|
70 |
-
#
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
def
|
74 |
"""
|
75 |
-
Возвращает
|
76 |
-
|
77 |
"""
|
|
|
78 |
ct = (resp.headers.get("content-type") or "").lower()
|
79 |
data = resp.content
|
80 |
|
81 |
-
|
82 |
-
keys = ["more_detailed_caption", "detailed_caption", "caption", "text", "ocr", "description"]
|
83 |
-
def walk(o):
|
84 |
-
res = []
|
85 |
-
if isinstance(o, dict):
|
86 |
-
for k in keys:
|
87 |
-
if k in o and isinstance(o[k], str) and o[k].strip():
|
88 |
-
res.append(o[k].strip())
|
89 |
-
for v in o.values():
|
90 |
-
res.extend(walk(v))
|
91 |
-
elif isinstance(o, list):
|
92 |
-
for it in o:
|
93 |
-
res.extend(walk(it))
|
94 |
-
elif isinstance(o, str):
|
95 |
-
if o.strip():
|
96 |
-
res.append(o.strip())
|
97 |
-
return res
|
98 |
-
arr = walk(obj)
|
99 |
-
return arr[0] if arr else None
|
100 |
-
|
101 |
-
# JSON
|
102 |
if "application/json" in ct and not data.startswith(b"PK"):
|
103 |
try:
|
104 |
obj = resp.json()
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
except Exception:
|
107 |
pass
|
108 |
|
@@ -110,40 +160,64 @@ def _parse_vlm_response(resp: requests.Response) -> str:
|
|
110 |
if data.startswith(b"PK") or "zip" in ct or "octet-stream" in ct:
|
111 |
try:
|
112 |
with zipfile.ZipFile(io.BytesIO(data), "r") as z:
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
try:
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
except Exception:
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
primary = txt
|
127 |
-
return primary or "[Нет текстового результата]"
|
128 |
except Exception:
|
129 |
pass
|
130 |
|
131 |
-
#
|
132 |
try:
|
133 |
-
|
|
|
134 |
except Exception:
|
135 |
-
return "
|
136 |
-
|
137 |
-
def
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
payload = {"messages": [{"role": "user", "content": content}]}
|
144 |
headers = {
|
145 |
"Authorization": f"Bearer {NV_API_KEY}",
|
146 |
-
"Accept": "application/
|
147 |
"Content-Type": "application/json",
|
148 |
"NVCF-INPUT-ASSET-REFERENCES": asset_id,
|
149 |
"NVCF-FUNCTION-ASSET-IDS": asset_id,
|
@@ -151,8 +225,32 @@ def get_more_detailed_caption(image_path: str) -> Tuple[str, str]:
|
|
151 |
resp = requests.post(NV_VLM_URL, headers=headers, json=payload, timeout=300)
|
152 |
if not resp.ok:
|
153 |
raise RuntimeError(f"VLM HTTP {resp.status_code}: {resp.text}")
|
154 |
-
|
155 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# --------------------- LLM streaming utils ---------------------
|
158 |
def _extract_text_from_stream_chunk(chunk: Any) -> str:
|
@@ -187,7 +285,6 @@ def respond(
|
|
187 |
):
|
188 |
"""
|
189 |
message: MultimodalTextbox -> {"text": str, "files": [<paths or dicts>]}
|
190 |
-
Возвращает generator с потоковым ответом LLM.
|
191 |
"""
|
192 |
text = (message or {}).get("text", "") if isinstance(message, dict) else str(message or "")
|
193 |
files = (message or {}).get("files", []) if isinstance(message, dict) else []
|
@@ -195,7 +292,6 @@ def respond(
|
|
195 |
def first_image_path(files) -> Optional[str]:
|
196 |
for f in files:
|
197 |
if isinstance(f, dict) and f.get("path"):
|
198 |
-
# gradio dict
|
199 |
mt = f.get("mime_type") or _guess_mime(f["path"])
|
200 |
if mt.startswith("image/"):
|
201 |
return f["path"]
|
@@ -206,7 +302,7 @@ def respond(
|
|
206 |
|
207 |
img_path = first_image_path(files)
|
208 |
|
209 |
-
#
|
210 |
parts = []
|
211 |
if text and text.strip():
|
212 |
parts.append(text.strip())
|
@@ -218,20 +314,30 @@ def respond(
|
|
218 |
chat_history.append([user_visible, ""])
|
219 |
yield {"text": "", "files": []}, chat_history, last_caption, last_asset_id
|
220 |
|
221 |
-
#
|
222 |
caption = last_caption or ""
|
223 |
asset_id = last_asset_id or ""
|
224 |
try:
|
225 |
if img_path:
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
except Exception as e:
|
228 |
-
caption =
|
|
|
|
|
|
|
229 |
|
230 |
-
# Системный промпт
|
231 |
if caption:
|
232 |
system_prompt = (
|
233 |
-
"You are a helpful multimodal assistant
|
234 |
-
"Use the provided 'More Detailed Caption' as
|
|
|
235 |
"If something is not visible or uncertain, say so.\n\n"
|
236 |
"Image Caption START >>>\n"
|
237 |
f"{caption}\n"
|
@@ -239,10 +345,14 @@ def respond(
|
|
239 |
)
|
240 |
else:
|
241 |
system_prompt = (
|
242 |
-
"You are a helpful assistant.
|
243 |
-
"If
|
|
|
244 |
)
|
245 |
|
|
|
|
|
|
|
246 |
# Стрим LLM
|
247 |
assistant_accum = ""
|
248 |
try:
|
@@ -250,7 +360,7 @@ def respond(
|
|
250 |
model="openai/gpt-oss-120b",
|
251 |
messages=[
|
252 |
{"role": "system", "content": system_prompt},
|
253 |
-
{"role": "user", "content":
|
254 |
],
|
255 |
temperature=0.7,
|
256 |
top_p=1.0,
|
@@ -265,14 +375,14 @@ def respond(
|
|
265 |
chat_history[-1][1] = assistant_accum
|
266 |
yield {"text": "", "files": []}, chat_history, caption, asset_id
|
267 |
|
268 |
-
except Exception
|
269 |
-
#
|
270 |
try:
|
271 |
resp = llm.chat.completions.create(
|
272 |
model="openai/gpt-oss-120b",
|
273 |
messages=[
|
274 |
{"role": "system", "content": system_prompt},
|
275 |
-
{"role": "user", "content":
|
276 |
],
|
277 |
temperature=0.7,
|
278 |
top_p=1.0,
|
@@ -314,7 +424,6 @@ messenger_css = """
|
|
314 |
#send { min-width: 44px; max-width: 44px; height: 44px; border-radius: 999px; }
|
315 |
#msg .mm-wrap { border: 1px solid rgba(0,0,0,0.08); border-radius: 999px; }
|
316 |
.gr-chatbot { border-radius: 0 !important; }
|
317 |
-
.gr-chatbot .wrap.svelte-1cl0v3x { padding: 12px !important; } /* мягкие отступы (селектор может отличаться по версии) */
|
318 |
"""
|
319 |
|
320 |
theme = gr.themes.Soft(
|
@@ -334,13 +443,8 @@ with gr.Blocks(theme=theme, css=messenger_css, analytics_enabled=False) as demo:
|
|
334 |
asset_state = gr.State(value="")
|
335 |
|
336 |
with gr.Group(elem_id="chat-wrap"):
|
337 |
-
chatbot = gr.Chatbot(
|
338 |
-
label="",
|
339 |
-
height=560,
|
340 |
-
elem_id="chat"
|
341 |
-
)
|
342 |
|
343 |
-
# Нижняя компактная строка ввода с маленькой кнопкой вложений внутри
|
344 |
with gr.Row(elem_id="bottom-bar"):
|
345 |
msg = gr.MultimodalTextbox(
|
346 |
show_label=False,
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
+
Элегантный чат как в мессенджерах:
|
5 |
+
- Кнопка добавления изображения прямо в строке ввода.
|
6 |
+
- Florence-2 (NIM API) создаёт подпись (<MORE_DETAILED_CAPTION>) серверно.
|
7 |
+
- Надёжный парсер: вытягивает текст из ZIP/JSON, синтезирует summary из детекций,
|
8 |
+
и имеет фолбэки <DETAILED_CAPTION> → <CAPTION> → <OCR>.
|
9 |
+
- LLM-стриминг через NVIDIA Integrate (OpenAI-совместимый API).
|
10 |
+
- Без WebGPU.
|
11 |
+
|
12 |
+
Требуется: NV_API_KEY в Secrets HF Space.
|
13 |
"""
|
14 |
|
15 |
import os
|
|
|
40 |
return mimetypes.guess_type(path)[0] or "image/jpeg"
|
41 |
|
42 |
def nvcf_upload_asset(image_path: str, description: str = "Chat image") -> str:
|
|
|
43 |
auth = requests.post(
|
44 |
NVCF_ASSETS_URL,
|
45 |
headers={
|
|
|
53 |
auth.raise_for_status()
|
54 |
up_url = auth.json()["uploadUrl"]
|
55 |
asset_id = str(auth.json()["assetId"])
|
|
|
56 |
with open(image_path, "rb") as f:
|
57 |
put = requests.put(
|
58 |
up_url,
|
|
|
66 |
put.raise_for_status()
|
67 |
return asset_id
|
68 |
|
69 |
+
def _vlm_content(task_token: str, asset_id: str, text_prompt: Optional[str] = None) -> str:
|
70 |
+
# "<TASK_PROMPT><text_prompt (когда нужен)><img>"
|
71 |
+
parts = [task_token]
|
72 |
+
if text_prompt and text_prompt.strip():
|
73 |
+
parts.append(text_prompt.strip())
|
74 |
+
parts.append(f'<img src="data:image/jpeg;asset_id,{asset_id}" />')
|
75 |
+
return "".join(parts)
|
76 |
+
|
77 |
+
PRIORITY_TEXT_KEYS = [
|
78 |
+
"more_detailed_caption", "detailed_caption", "caption",
|
79 |
+
"generated_text", "text", "ocr", "description",
|
80 |
+
"output_text", "result_text",
|
81 |
+
]
|
82 |
+
LABEL_KEYS = ["label", "name", "category", "class", "text"]
|
83 |
+
|
84 |
+
def _deep_text_candidates(obj: Any) -> List[str]:
|
85 |
+
out = []
|
86 |
+
def walk(o):
|
87 |
+
if isinstance(o, dict):
|
88 |
+
# Сначала — приоритетные ключи
|
89 |
+
for k in PRIORITY_TEXT_KEYS:
|
90 |
+
if k in o and isinstance(o[k], str) and o[k].strip():
|
91 |
+
out.append(o[k].strip())
|
92 |
+
# Затем любые строковые поля
|
93 |
+
for v in o.values():
|
94 |
+
walk(v)
|
95 |
+
elif isinstance(o, list):
|
96 |
+
for it in o:
|
97 |
+
walk(it)
|
98 |
+
elif isinstance(o, str):
|
99 |
+
if o.strip():
|
100 |
+
out.append(o.strip())
|
101 |
+
walk(obj)
|
102 |
+
return out
|
103 |
+
|
104 |
+
def _synthesize_from_detections(obj: Any) -> Optional[str]:
|
105 |
+
"""
|
106 |
+
Если пришли детекции/объекты, собрать краткое резюме вида:
|
107 |
+
'Обнаружено: person×2, dog×1'
|
108 |
+
"""
|
109 |
+
labels = []
|
110 |
+
def walk(o):
|
111 |
+
if isinstance(o, dict):
|
112 |
+
# списки детекций под известными ключами
|
113 |
+
for key in ["detections", "predictions", "objects", "results"]:
|
114 |
+
if key in o and isinstance(o[key], list):
|
115 |
+
for it in o[key]:
|
116 |
+
if isinstance(it, dict):
|
117 |
+
label = None
|
118 |
+
for lk in LABEL_KEYS:
|
119 |
+
if lk in it and isinstance(it[lk], str):
|
120 |
+
label = it[lk]
|
121 |
+
break
|
122 |
+
if label:
|
123 |
+
labels.append(label)
|
124 |
+
for v in o.values():
|
125 |
+
walk(v)
|
126 |
+
elif isinstance(o, list):
|
127 |
+
for it in o:
|
128 |
+
walk(it)
|
129 |
+
walk(obj)
|
130 |
+
if not labels:
|
131 |
+
return None
|
132 |
+
# Подсчитать
|
133 |
+
from collections import Counter
|
134 |
+
c = Counter(labels)
|
135 |
+
parts = [f"{k}×{v}" for k, v in c.most_common()]
|
136 |
+
return "Обнаружено: " + ", ".join(parts)
|
137 |
|
138 |
+
def _parse_vlm_response_to_text(resp: requests.Response) -> Tuple[str, List[str]]:
|
139 |
"""
|
140 |
+
Возвращает (best_text, zip_listing).
|
141 |
+
Если нечего извлечь — best_text = "" (важно для фолбэков).
|
142 |
"""
|
143 |
+
listing = []
|
144 |
ct = (resp.headers.get("content-type") or "").lower()
|
145 |
data = resp.content
|
146 |
|
147 |
+
# JSON inline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
if "application/json" in ct and not data.startswith(b"PK"):
|
149 |
try:
|
150 |
obj = resp.json()
|
151 |
+
cands = _deep_text_candidates(obj)
|
152 |
+
if cands:
|
153 |
+
return cands[0], listing
|
154 |
+
synth = _synthesize_from_detections(obj)
|
155 |
+
return (synth or ""), listing
|
156 |
except Exception:
|
157 |
pass
|
158 |
|
|
|
160 |
if data.startswith(b"PK") or "zip" in ct or "octet-stream" in ct:
|
161 |
try:
|
162 |
with zipfile.ZipFile(io.BytesIO(data), "r") as z:
|
163 |
+
listing = z.namelist()
|
164 |
+
text_cands = []
|
165 |
+
synth_cand = None
|
166 |
+
# Сначала попробуем JSON
|
167 |
+
for name in listing:
|
168 |
+
if not name.lower().endswith(".json"):
|
169 |
+
continue
|
170 |
+
try:
|
171 |
+
with z.open(name) as f:
|
172 |
+
obj = json.loads(f.read().decode("utf-8", errors="ignore"))
|
173 |
+
text_cands += _deep_text_candidates(obj)
|
174 |
+
synth = _synthesize_from_detections(obj)
|
175 |
+
synth_cand = synth_cand or synth
|
176 |
+
except Exception:
|
177 |
+
continue
|
178 |
+
if text_cands:
|
179 |
+
return text_cands[0], listing
|
180 |
+
# Затем TXT
|
181 |
+
for name in listing:
|
182 |
+
if name.lower().endswith(".txt"):
|
183 |
try:
|
184 |
+
with z.open(name) as f:
|
185 |
+
txt = f.read().decode("utf-8", errors="ignore").strip()
|
186 |
+
if txt:
|
187 |
+
return txt, listing
|
188 |
except Exception:
|
189 |
+
continue
|
190 |
+
# Если ничего — попробуем синтез из детекций
|
191 |
+
if synth_cand:
|
192 |
+
return synth_cand, listing
|
|
|
|
|
193 |
except Exception:
|
194 |
pass
|
195 |
|
196 |
+
# Фолбэк: попытка как текст
|
197 |
try:
|
198 |
+
txt = data.decode("utf-8", errors="ignore").strip()
|
199 |
+
return (txt if txt else ""), listing
|
200 |
except Exception:
|
201 |
+
return "", listing
|
202 |
+
|
203 |
+
def _is_good_caption(text: str) -> bool:
|
204 |
+
if not text:
|
205 |
+
return False
|
206 |
+
t = text.strip()
|
207 |
+
if not t or len(t) < 3:
|
208 |
+
return False
|
209 |
+
# Отбросим наши старые плейсхолдеры
|
210 |
+
bad_markers = [
|
211 |
+
"Получено", "изображений-результатов", "[Result empty]", "[Результат пуст]"
|
212 |
+
]
|
213 |
+
return not any(m.lower() in t.lower() for m in bad_markers)
|
214 |
+
|
215 |
+
def _call_florence(task_token: str, asset_id: str, text_prompt: Optional[str] = None) -> Tuple[str, List[str]]:
|
216 |
+
content = _vlm_content(task_token, asset_id, text_prompt)
|
217 |
payload = {"messages": [{"role": "user", "content": content}]}
|
218 |
headers = {
|
219 |
"Authorization": f"Bearer {NV_API_KEY}",
|
220 |
+
"Accept": "application/zip, application/json, */*",
|
221 |
"Content-Type": "application/json",
|
222 |
"NVCF-INPUT-ASSET-REFERENCES": asset_id,
|
223 |
"NVCF-FUNCTION-ASSET-IDS": asset_id,
|
|
|
225 |
resp = requests.post(NV_VLM_URL, headers=headers, json=payload, timeout=300)
|
226 |
if not resp.ok:
|
227 |
raise RuntimeError(f"VLM HTTP {resp.status_code}: {resp.text}")
|
228 |
+
text, listing = _parse_vlm_response_to_text(resp)
|
229 |
+
return text, listing
|
230 |
+
|
231 |
+
def get_robust_caption(image_path: str) -> Tuple[str, str, List[str]]:
|
232 |
+
"""
|
233 |
+
Пытаемся получить осмысленную подпись.
|
234 |
+
Возвращает (caption, asset_id, zip_listing)
|
235 |
+
"""
|
236 |
+
asset_id = nvcf_upload_asset(image_path)
|
237 |
+
attempts = [
|
238 |
+
("<MORE_DETAILED_CAPTION>", None),
|
239 |
+
("<DETAILED_CAPTION>", None),
|
240 |
+
("<CAPTION>", None),
|
241 |
+
("<OCR>", None),
|
242 |
+
]
|
243 |
+
last_listing: List[str] = []
|
244 |
+
for task, txt in attempts:
|
245 |
+
try:
|
246 |
+
caption, listing = _call_florence(task, asset_id, txt)
|
247 |
+
last_listing = listing or last_listing
|
248 |
+
if _is_good_caption(caption):
|
249 |
+
return caption, asset_id, listing
|
250 |
+
except Exception:
|
251 |
+
continue
|
252 |
+
# Если совсем ничего — пустая строка (важно для чата)
|
253 |
+
return "", asset_id, last_listing
|
254 |
|
255 |
# --------------------- LLM streaming utils ---------------------
|
256 |
def _extract_text_from_stream_chunk(chunk: Any) -> str:
|
|
|
285 |
):
|
286 |
"""
|
287 |
message: MultimodalTextbox -> {"text": str, "files": [<paths or dicts>]}
|
|
|
288 |
"""
|
289 |
text = (message or {}).get("text", "") if isinstance(message, dict) else str(message or "")
|
290 |
files = (message or {}).get("files", []) if isinstance(message, dict) else []
|
|
|
292 |
def first_image_path(files) -> Optional[str]:
|
293 |
for f in files:
|
294 |
if isinstance(f, dict) and f.get("path"):
|
|
|
295 |
mt = f.get("mime_type") or _guess_mime(f["path"])
|
296 |
if mt.startswith("image/"):
|
297 |
return f["path"]
|
|
|
302 |
|
303 |
img_path = first_image_path(files)
|
304 |
|
305 |
+
# Сообщение пользователя (лаконично)
|
306 |
parts = []
|
307 |
if text and text.strip():
|
308 |
parts.append(text.strip())
|
|
|
314 |
chat_history.append([user_visible, ""])
|
315 |
yield {"text": "", "files": []}, chat_history, last_caption, last_asset_id
|
316 |
|
317 |
+
# Подпись к изображению
|
318 |
caption = last_caption or ""
|
319 |
asset_id = last_asset_id or ""
|
320 |
try:
|
321 |
if img_path:
|
322 |
+
# Показать пользователю, что генерируем подпись
|
323 |
+
chat_history[-1][1] = "🔎 Генерирую подпись к изображению…"
|
324 |
+
yield {"text": "", "files": []}, chat_history, caption, asset_id
|
325 |
+
|
326 |
+
caption, asset_id, _ = get_robust_caption(img_path)
|
327 |
+
if not _is_good_caption(caption):
|
328 |
+
caption = "" # не подсовываем пустышку в LLM
|
329 |
except Exception as e:
|
330 |
+
caption = ""
|
331 |
+
# Лаконично сигналим об ошибке в подкапоте
|
332 |
+
chat_history[-1][1] = f"⚠️ Не удалось получить подпись: {e}"
|
333 |
+
yield {"text": "", "files": []}, chat_history, caption, asset_id
|
334 |
|
335 |
+
# Системный промпт (без «рассуждений»)
|
336 |
if caption:
|
337 |
system_prompt = (
|
338 |
+
"You are a helpful multimodal assistant. "
|
339 |
+
"Use the provided 'More Detailed Caption' as visual context. "
|
340 |
+
"Do not reveal your chain-of-thought. "
|
341 |
"If something is not visible or uncertain, say so.\n\n"
|
342 |
"Image Caption START >>>\n"
|
343 |
f"{caption}\n"
|
|
|
345 |
)
|
346 |
else:
|
347 |
system_prompt = (
|
348 |
+
"You are a helpful assistant. "
|
349 |
+
"If the user refers to an image but no caption is available, ask them to reattach the image. "
|
350 |
+
"Do not reveal your chain-of-thought."
|
351 |
)
|
352 |
|
353 |
+
# Текст для модели (если совсем ничего не написали, но есть изображение)
|
354 |
+
user_text_for_llm = text or ("Describe the attached image." if caption else "Hi")
|
355 |
+
|
356 |
# Стрим LLM
|
357 |
assistant_accum = ""
|
358 |
try:
|
|
|
360 |
model="openai/gpt-oss-120b",
|
361 |
messages=[
|
362 |
{"role": "system", "content": system_prompt},
|
363 |
+
{"role": "user", "content": user_text_for_llm}
|
364 |
],
|
365 |
temperature=0.7,
|
366 |
top_p=1.0,
|
|
|
375 |
chat_history[-1][1] = assistant_accum
|
376 |
yield {"text": "", "files": []}, chat_history, caption, asset_id
|
377 |
|
378 |
+
except Exception:
|
379 |
+
# Фолбэк без стрима
|
380 |
try:
|
381 |
resp = llm.chat.completions.create(
|
382 |
model="openai/gpt-oss-120b",
|
383 |
messages=[
|
384 |
{"role": "system", "content": system_prompt},
|
385 |
+
{"role": "user", "content": user_text_for_llm}
|
386 |
],
|
387 |
temperature=0.7,
|
388 |
top_p=1.0,
|
|
|
424 |
#send { min-width: 44px; max-width: 44px; height: 44px; border-radius: 999px; }
|
425 |
#msg .mm-wrap { border: 1px solid rgba(0,0,0,0.08); border-radius: 999px; }
|
426 |
.gr-chatbot { border-radius: 0 !important; }
|
|
|
427 |
"""
|
428 |
|
429 |
theme = gr.themes.Soft(
|
|
|
443 |
asset_state = gr.State(value="")
|
444 |
|
445 |
with gr.Group(elem_id="chat-wrap"):
|
446 |
+
chatbot = gr.Chatbot(label="", height=560, elem_id="chat")
|
|
|
|
|
|
|
|
|
447 |
|
|
|
448 |
with gr.Row(elem_id="bottom-bar"):
|
449 |
msg = gr.MultimodalTextbox(
|
450 |
show_label=False,
|