3dembed / app.py
Sergidev's picture
Update app.py
4525b31 verified
raw
history blame
3.1 kB
import gradio as gr
import spaces
import torch
import os
from transformers import AutoTokenizer, AutoModel
import plotly.graph_objects as go
TOKEN = os.getenv("HF_TOKEN")
default_model_name = "mistralai/Mistral-7B-Instruct-v0.1"
tokenizer = None
model = None
@spaces.GPU(duration=300)
def get_embedding(text, model_repo):
global tokenizer, model
if tokenizer is None or model is None or model.name_or_path != model_repo:
try:
tokenizer = AutoTokenizer.from_pretrained(model_repo)
model = AutoModel.from_pretrained(model_repo, torch_dtype=torch.float16).cuda()
# Set pad token to eos token if not defined
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.resize_token_embeddings(len(tokenizer))
except Exception as e:
return f"Error loading model: {str(e)}"
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda')
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
def reduce_to_3d(embedding):
return embedding[:3]
@spaces.GPU
def compare_embeddings(model_repo, *texts):
if not model_repo:
model_repo = default_model_name
embeddings = []
for text in texts:
if text.strip():
emb = get_embedding(text, model_repo)
if isinstance(emb, str): # Error message
return emb
embeddings.append(emb)
embeddings_3d = [reduce_to_3d(emb) for emb in embeddings]
fig = go.Figure()
for i, emb in enumerate(embeddings_3d):
fig.add_trace(go.Scatter3d(x=[0, emb[0]], y=[0, emb[1]], z=[0, emb[2]],
mode='lines+markers', name=f'Text {i+1}'))
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'))
return fig
def generate_text_boxes(n):
return [gr.Textbox(label=f"Text {i+1}", visible=(i < n)) for i in range(10)]
with gr.Blocks() as iface:
gr.Markdown("# 3D Embedding Comparison")
gr.Markdown("Compare the embeddings of multiple strings visualized in 3D space using a custom model.")
model_repo_input = gr.Textbox(label="Model Repository", value=default_model_name, placeholder="Enter the model repository (e.g., mistralai/Mistral-7B-Instruct-v0.3)")
num_texts = gr.Slider(minimum=2, maximum=10, step=1, value=2, label="Number of texts to compare")
with gr.Column() as input_column:
text_boxes = generate_text_boxes(2)
output = gr.Plot()
compare_button = gr.Button("Compare Embeddings")
def update_interface(n):
return [gr.update(visible=(i < n)) for i in range(10)]
num_texts.change(
update_interface,
inputs=[num_texts],
outputs=text_boxes
)
compare_button.click(
compare_embeddings,
inputs=[model_repo_input] + text_boxes,
outputs=output
)
iface.launch()