3dembed / app.py
Sergidev's picture
v2p2
f603bfa verified
raw
history blame
2.82 kB
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModel
import plotly.graph_objects as go
import random
model_name = "mistralai/Mistral-7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = None
# Set pad token to eos token if not defined
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
@spaces.GPU
def get_embedding(text):
global model
if model is None:
model = AutoModel.from_pretrained(model_name).cuda()
model.resize_token_embeddings(len(tokenizer))
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda')
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
def reduce_to_3d(embedding):
return embedding[:3]
def random_color():
return f'rgb({random.randint(0,255)}, {random.randint(0,255)}, {random.randint(0,255)})'
@spaces.GPU
def compare_embeddings(*texts):
embeddings = [get_embedding(text) for text in texts if text.strip()]
embeddings_3d = [reduce_to_3d(emb) for emb in embeddings]
fig = go.Figure()
# Add black origin point
fig.add_trace(go.Scatter3d(x=[0], y=[0], z=[0], mode='markers', marker=dict(size=5, color='black'), name='Origin'))
# Add lines and points for each text
for i, emb in enumerate(embeddings_3d):
color = random_color()
fig.add_trace(go.Scatter3d(x=[0, emb[0]], y=[0, emb[1]], z=[0, emb[2]], mode='lines+markers',
line=dict(color=color), marker=dict(color=color), name=f'Text {i+1}'))
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'))
return fig
def add_textbox(textboxes):
textboxes.append(gr.Textbox(label=f"Text {len(textboxes) + 1}"))
return textboxes
def remove_textbox(textboxes):
if len(textboxes) > 2:
textboxes.pop()
return textboxes
with gr.Blocks() as iface:
gr.Markdown("# 3D Embedding Comparison")
gr.Markdown("Compare the embeddings of multiple strings visualized in 3D space using Mistral 7B.")
with gr.Column():
textboxes = gr.List([gr.Textbox(label="Text 1"), gr.Textbox(label="Text 2")])
with gr.Row():
add_btn = gr.Button("Add String")
remove_btn = gr.Button("Remove String")
plot_output = gr.Plot()
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton(components=[textboxes, plot_output], value="Clear")
add_btn.click(add_textbox, inputs=[textboxes], outputs=[textboxes])
remove_btn.click(remove_textbox, inputs=[textboxes], outputs=[textboxes])
submit_btn.click(compare_embeddings, inputs=[textboxes], outputs=[plot_output])
iface.launch()