|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
import plotly.graph_objects as go |
|
import numpy as np |
|
|
|
model_name = "mistralai/Mistral-7B-v0.1" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = None |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
@spaces.GPU |
|
def get_embedding(text): |
|
global model |
|
if model is None: |
|
model = AutoModel.from_pretrained(model_name).cuda() |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda') |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy() |
|
|
|
def reduce_to_3d(embedding): |
|
return embedding[:3] |
|
|
|
@spaces.GPU |
|
def compare_embeddings(*texts): |
|
embeddings = [get_embedding(text) for text in texts if text.strip()] |
|
embeddings_3d = [reduce_to_3d(emb) for emb in embeddings] |
|
|
|
fig = go.Figure() |
|
|
|
colors = ['red', 'blue', 'green', 'purple', 'orange', 'cyan', 'magenta', 'yellow'] |
|
|
|
for i, emb in enumerate(embeddings_3d): |
|
color = colors[i % len(colors)] |
|
fig.add_trace(go.Scatter3d( |
|
x=[0, emb[0]], y=[0, emb[1]], z=[0, emb[2]], |
|
mode='lines+markers', |
|
name=f'Text {i+1}', |
|
line=dict(color=color), |
|
marker=dict(color=color) |
|
)) |
|
|
|
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z')) |
|
|
|
return fig |
|
|
|
def create_interface(num_inputs): |
|
with gr.Blocks() as new_interface: |
|
text_inputs = [gr.Textbox(label=f"Text {i+1}") for i in range(num_inputs)] |
|
output = gr.Plot() |
|
submit_btn = gr.Button("Compare Embeddings") |
|
submit_btn.click(fn=compare_embeddings, inputs=text_inputs, outputs=output) |
|
return new_interface |
|
|
|
with gr.Blocks() as iface: |
|
gr.Markdown("# 3D Embedding Comparison") |
|
gr.Markdown("Compare the embeddings of multiple strings visualized in 3D space using Mistral 7B.") |
|
|
|
num_inputs = gr.Slider(minimum=2, maximum=10, step=1, value=2, label="Number of texts to compare") |
|
interface_container = gr.HTML() |
|
|
|
def update_interface(num): |
|
return create_interface(num) |
|
|
|
num_inputs.change(fn=update_interface, inputs=[num_inputs], outputs=[interface_container]) |
|
|
|
|
|
interface_container.update(create_interface(2)) |
|
|
|
iface.launch() |