Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModel
|
5 |
import plotly.graph_objects as go
|
6 |
-
import numpy as np
|
7 |
|
8 |
model_name = "mistralai/Mistral-7B-v0.1"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -13,22 +11,20 @@ model = None
|
|
13 |
if tokenizer.pad_token is None:
|
14 |
tokenizer.pad_token = tokenizer.eos_token
|
15 |
|
16 |
-
@spaces.GPU
|
17 |
def get_embedding(text):
|
18 |
global model
|
19 |
if model is None:
|
20 |
-
model = AutoModel.from_pretrained(model_name)
|
21 |
model.resize_token_embeddings(len(tokenizer))
|
22 |
|
23 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
24 |
with torch.no_grad():
|
25 |
outputs = model(**inputs)
|
26 |
-
return outputs.last_hidden_state.mean(dim=1).squeeze().
|
27 |
|
28 |
def reduce_to_3d(embedding):
|
29 |
return embedding[:3]
|
30 |
|
31 |
-
@spaces.GPU
|
32 |
def compare_embeddings(*texts):
|
33 |
embeddings = [get_embedding(text) for text in texts if text.strip()] # Only process non-empty texts
|
34 |
embeddings_3d = [reduce_to_3d(emb) for emb in embeddings]
|
@@ -51,27 +47,23 @@ def compare_embeddings(*texts):
|
|
51 |
|
52 |
return fig
|
53 |
|
54 |
-
def create_interface(num_inputs):
|
55 |
-
with gr.Blocks() as new_interface:
|
56 |
-
text_inputs = [gr.Textbox(label=f"Text {i+1}") for i in range(num_inputs)]
|
57 |
-
output = gr.Plot()
|
58 |
-
submit_btn = gr.Button("Compare Embeddings")
|
59 |
-
submit_btn.click(fn=compare_embeddings, inputs=text_inputs, outputs=output)
|
60 |
-
return new_interface
|
61 |
-
|
62 |
with gr.Blocks() as iface:
|
63 |
gr.Markdown("# 3D Embedding Comparison")
|
64 |
gr.Markdown("Compare the embeddings of multiple strings visualized in 3D space using Mistral 7B.")
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
def update_interface(num):
|
70 |
-
return create_interface(num)
|
71 |
|
72 |
-
|
|
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
import plotly.graph_objects as go
|
|
|
5 |
|
6 |
model_name = "mistralai/Mistral-7B-v0.1"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
11 |
if tokenizer.pad_token is None:
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
13 |
|
|
|
14 |
def get_embedding(text):
|
15 |
global model
|
16 |
if model is None:
|
17 |
+
model = AutoModel.from_pretrained(model_name)
|
18 |
model.resize_token_embeddings(len(tokenizer))
|
19 |
|
20 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
21 |
with torch.no_grad():
|
22 |
outputs = model(**inputs)
|
23 |
+
return outputs.last_hidden_state.mean(dim=1).squeeze().detach().numpy()
|
24 |
|
25 |
def reduce_to_3d(embedding):
|
26 |
return embedding[:3]
|
27 |
|
|
|
28 |
def compare_embeddings(*texts):
|
29 |
embeddings = [get_embedding(text) for text in texts if text.strip()] # Only process non-empty texts
|
30 |
embeddings_3d = [reduce_to_3d(emb) for emb in embeddings]
|
|
|
47 |
|
48 |
return fig
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
with gr.Blocks() as iface:
|
51 |
gr.Markdown("# 3D Embedding Comparison")
|
52 |
gr.Markdown("Compare the embeddings of multiple strings visualized in 3D space using Mistral 7B.")
|
53 |
|
54 |
+
with gr.Row():
|
55 |
+
num_inputs = gr.Slider(minimum=2, maximum=10, step=1, value=2, label="Number of texts to compare")
|
|
|
|
|
|
|
56 |
|
57 |
+
with gr.Row() as text_container:
|
58 |
+
text_inputs = [gr.Textbox(label=f"Text {i+1}") for i in range(2)]
|
59 |
|
60 |
+
output = gr.Plot()
|
61 |
+
submit_btn = gr.Button("Compare Embeddings")
|
62 |
+
|
63 |
+
def update_text_inputs(num):
|
64 |
+
return {text_container: gr.Row.update(children=[gr.Textbox(label=f"Text {i+1}") for i in range(num)])}
|
65 |
+
|
66 |
+
num_inputs.change(fn=update_text_inputs, inputs=[num_inputs], outputs=[text_container])
|
67 |
+
submit_btn.click(fn=compare_embeddings, inputs=text_container.children, outputs=output)
|
68 |
|
69 |
iface.launch()
|