Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,56 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
zero = torch.Tensor([0]).cuda()
|
6 |
print(zero.device) # <-- 'cpu' 🤔
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
@spaces.GPU
|
9 |
-
def
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
from sklearn.decomposition import PCA
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
from huggingface_hub import HfApi
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
import os
|
10 |
+
import sys
|
11 |
|
12 |
zero = torch.Tensor([0]).cuda()
|
13 |
print(zero.device) # <-- 'cpu' 🤔
|
14 |
|
15 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModel.from_pretrained(model_name)
|
18 |
+
|
19 |
+
@spaces.GPU
|
20 |
+
def get_embedding(text):
|
21 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
25 |
+
|
26 |
+
def compress_to_3d(embedding):
|
27 |
+
pca = PCA(n_components=3)
|
28 |
+
return pca.fit_transform(embedding.reshape(1, -1))[0]
|
29 |
+
|
30 |
@spaces.GPU
|
31 |
+
def compare_embeddings(text1, text2):
|
32 |
+
emb1 = get_embedding(text1)
|
33 |
+
emb2 = get_embedding(text2)
|
34 |
+
|
35 |
+
emb1_3d = compress_to_3d(emb1)
|
36 |
+
emb2_3d = compress_to_3d(emb2)
|
37 |
+
|
38 |
+
fig = go.Figure(data=[
|
39 |
+
go.Scatter3d(x=[0, emb1_3d[0]], y=[0, emb1_3d[1]], z=[0, emb1_3d[2]], mode='lines+markers', name='Text 1'),
|
40 |
+
go.Scatter3d(x=[0, emb2_3d[0]], y=[0, emb2_3d[1]], z=[0, emb2_3d[2]], mode='lines+markers', name='Text 2')
|
41 |
+
])
|
42 |
+
|
43 |
+
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'))
|
44 |
+
|
45 |
+
return fig
|
46 |
|
47 |
+
iface = gr.Interface(
|
48 |
+
fn=compare_embeddings,
|
49 |
+
inputs=[
|
50 |
+
gr.Textbox(label="Text 1"),
|
51 |
+
gr.Textbox(label="Text 2")
|
52 |
+
],
|
53 |
+
outputs=gr.Plot(),
|
54 |
+
title="3D Embedding Comparison",
|
55 |
+
description="Compare the embeddings of two strings visualized in 3D space."
|
56 |
+
)
|