Spaces:
Running
on
Zero
Running
on
Zero
v3p4
Browse files
app.py
CHANGED
@@ -13,8 +13,6 @@ from datetime import datetime
|
|
13 |
from diffusers.models import AutoencoderKL
|
14 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
15 |
|
16 |
-
# ... (keep the existing imports and configurations)
|
17 |
-
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
@@ -40,7 +38,6 @@ torch.backends.cudnn.benchmark = False
|
|
40 |
|
41 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
42 |
|
43 |
-
|
44 |
def load_pipeline(model_name):
|
45 |
vae = AutoencoderKL.from_pretrained(
|
46 |
"madebyollin/sdxl-vae-fp16-fix",
|
@@ -66,8 +63,6 @@ def load_pipeline(model_name):
|
|
66 |
pipe.to(device)
|
67 |
return pipe
|
68 |
|
69 |
-
|
70 |
-
# Add a new function to parse and validate JSON input
|
71 |
def parse_json_parameters(json_str):
|
72 |
try:
|
73 |
params = json.loads(json_str)
|
@@ -81,7 +76,6 @@ def parse_json_parameters(json_str):
|
|
81 |
except Exception as e:
|
82 |
raise ValueError(f"Error parsing JSON: {str(e)}")
|
83 |
|
84 |
-
# Modify the generate function to accept JSON parameters
|
85 |
@spaces.GPU
|
86 |
def generate(
|
87 |
prompt: str,
|
@@ -206,7 +200,7 @@ generation_history = []
|
|
206 |
|
207 |
# Function to update the history dropdown
|
208 |
def update_history_dropdown():
|
209 |
-
return
|
210 |
|
211 |
# Modify the generate function to add results to the history
|
212 |
def generate_and_update_history(*args, **kwargs):
|
@@ -442,4 +436,4 @@ with gr.Blocks(css="style.css") as demo:
|
|
442 |
outputs=[history_image, history_metadata],
|
443 |
)
|
444 |
|
445 |
-
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|
|
|
13 |
from diffusers.models import AutoencoderKL
|
14 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
15 |
|
|
|
|
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
|
|
38 |
|
39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
40 |
|
|
|
41 |
def load_pipeline(model_name):
|
42 |
vae = AutoencoderKL.from_pretrained(
|
43 |
"madebyollin/sdxl-vae-fp16-fix",
|
|
|
63 |
pipe.to(device)
|
64 |
return pipe
|
65 |
|
|
|
|
|
66 |
def parse_json_parameters(json_str):
|
67 |
try:
|
68 |
params = json.loads(json_str)
|
|
|
76 |
except Exception as e:
|
77 |
raise ValueError(f"Error parsing JSON: {str(e)}")
|
78 |
|
|
|
79 |
@spaces.GPU
|
80 |
def generate(
|
81 |
prompt: str,
|
|
|
200 |
|
201 |
# Function to update the history dropdown
|
202 |
def update_history_dropdown():
|
203 |
+
return [f"{item['prompt']} ({item['timestamp']})" for item in generation_history]
|
204 |
|
205 |
# Modify the generate function to add results to the history
|
206 |
def generate_and_update_history(*args, **kwargs):
|
|
|
436 |
outputs=[history_image, history_metadata],
|
437 |
)
|
438 |
|
439 |
+
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|