File size: 9,911 Bytes
2dd154f
0250a5e
bd113ad
2dd154f
0250a5e
 
 
 
2dd154f
0250a5e
eb9cf96
bd113ad
2dd154f
0250a5e
 
 
 
 
bd113ad
0250a5e
 
 
 
 
bd113ad
0250a5e
 
 
 
 
 
 
 
 
 
 
2dd154f
0250a5e
 
2dd154f
 
 
0250a5e
 
 
 
 
341dbbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0250a5e
 
 
 
 
 
 
 
2dd154f
0250a5e
341dbbe
 
 
 
 
 
 
 
 
 
 
0250a5e
341dbbe
 
 
 
 
 
 
 
 
 
 
0250a5e
 
 
 
bd113ad
0250a5e
feae090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0250a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b75ec24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341dbbe
 
 
 
0250a5e
 
 
 
 
341dbbe
0250a5e
341dbbe
 
0250a5e
 
 
 
 
 
341dbbe
0250a5e
 
 
 
341dbbe
0250a5e
 
 
341dbbe
0250a5e
 
 
341dbbe
0250a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341dbbe
0250a5e
 
 
 
 
 
341dbbe
0250a5e
 
 
 
 
341dbbe
 
 
 
 
 
 
0250a5e
341dbbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0250a5e
341dbbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import spaces
import gc
import gradio as gr
import numpy as np
import os
from pathlib import Path
from diffusers import GGUFQuantizationConfig, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import torch
from PIL import Image

# Configuration
gc.collect()
torch.cuda.empty_cache()
torch.set_grad_enabled(False)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

# Load base model
model_id = "hunyuanvideo-community/HunyuanVideo"
base_path = f"/home/user/app/{model_id}"
os.makedirs(base_path, exist_ok=True)
snapshot_download(repo_id=model_id, local_dir=base_path)

# Load transformer
ckp_path = Path(base_path)
gguf_filename = "hunyuan-video-t2v-720p-Q4_0.gguf"
transformer_path = f"https://huggingface.co/city96/HunyuanVideo-gguf/blob/main/{gguf_filename}"
transformer = HunyuanVideoTransformer3DModel.from_single_file(
    transformer_path,
    quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
    torch_dtype=torch.bfloat16,
).to('cuda')

# Initialize pipeline
pipe = HunyuanVideoPipeline.from_pretrained(
    ckp_path,
    transformer=transformer,
    torch_dtype=torch.float16
).to("cuda")

# Configure VAE
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.vae.eval()

# Available LORAs with display names
LORA_CHOICES = [
    ("stripe_v2.safetensors", "Stripe Style"),
    ("Top_Off.safetensors", "Top Off Effect"),
    ("huanyan_helper.safetensors", "Hunyuan Helper"),
    ("huanyan_helper_alpha.safetensors", "Hunyuan Alpha"),
    ("hunyuan-t-solo-v1.0.safetensors", "Solo Animation")
]

# Load all LORAs with hunyuanvideo-lora adapter
for weight_name, display_name in LORA_CHOICES:
    pipe.load_lora_weights(
        "Sergidev/TTV4ME",
        weight_name=weight_name,
        adapter_name=display_name.replace(" ", "_").lower(),
        token=os.environ.get("HF_TOKEN")
    )

# Memory cleanup
gc.collect()
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=300)
def generate(
    prompt,
    image_input,
    height,
    width,
    num_frames,
    num_inference_steps,
    seed_value,
    fps,
    selected_loras,
    lora_weights,
    progress=gr.Progress(track_tqdm=True)
):
    # Validate image resolution
    if image_input is not None:
        img = Image.open(image_input)
        if img.size != (width, height):
            raise gr.Error(f"Image resolution {img.size} must match video resolution ({width}x{height})")

    # Configure LORAs
    active_adapters = [lora[1].replace(" ", "_").lower() for lora in LORA_CHOICES if lora[1] in selected_loras]
    weights = [float(lora_weights[selected_loras.index(lora[1])]) for lora in LORA_CHOICES if lora[1] in selected_loras]
    pipe.set_adapters(active_adapters, weights)

    with torch.cuda.device(0):
        if seed_value == -1:
            seed_value = torch.randint(0, MAX_SEED, (1,)).item()
        generator = torch.Generator('cuda').manual_seed(seed_value)

        with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad():
            # Use image input if provided, else use text prompt
            if image_input:
                output = pipe(
                    image=Image.open(image_input).convert("RGB"),
                    height=height,
                    width=width,
                    num_frames=num_frames,
                    num_inference_steps=num_inference_steps,
                    generator=generator,
                ).frames[0]
            else:
                output = pipe(
                    prompt=prompt,
                    height=height,
                    width=width,
                    num_frames=num_frames,
                    num_inference_steps=num_inference_steps,
                    generator=generator,
                ).frames[0]

        output_path = "output.mp4"
        export_to_video(output, output_path, fps=fps)
        torch.cuda.empty_cache()
        gc.collect()
        return output_path

def apply_preset(preset_name, *current_values):
    if preset_name == "Higher Resolution":
        return [608, 448, 24, 29, 12]
    elif preset_name == "More Frames":
        return [512, 320, 42, 27, 14]
    return current_values

css = """
#col-container {
    margin: 0 auto;
    max-width: 850px;
}

.dark-theme {
    background-color: #1f1f1f;
    color: #ffffff;
}

.container {
    margin: 0 auto;
    padding: 20px;
    border-radius: 10px;
    background-color: #2d2d2d;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}

.title {
    text-align: center;
    margin-bottom: 1em;
    color: #ffffff;
}

.description {
    text-align: center;
    margin-bottom: 2em;
    color: #cccccc;
    font-size: 0.95em;
    line-height: 1.5;
}

.prompt-container {
    background-color: #363636;
    padding: 15px;
    border-radius: 8px;
    margin-bottom: 1em;
    width: 100%;
}

.prompt-textbox {
    min-height: 80px !important;
}

.preset-buttons {
    display: flex;
    gap: 10px;
    justify-content: center;
    margin-bottom: 1em;
}

.support-text {
    text-align: center;
    margin-top: 1em;
    color: #cccccc;
    font-size: 0.9em;
}

a {
    color: #00a7e1;
    text-decoration: none;
}

a:hover {
    text-decoration: underline;
}

.lora-sliders {
    margin-top: 15px;
    border-top: 1px solid #444;
    padding-top: 15px;
}
"""

with gr.Blocks(css=css, theme="dark") as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# 🎬 Hunyuan Studio", elem_classes=["title"])
        gr.Markdown(
            """Generate videos from text or images using multiple LoRA adapters.
            Requires matching resolution between input image and output settings.""",
            elem_classes=["description"]
        )

        with gr.Column(elem_classes=["prompt-container"]):
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="Enter text prompt or upload image below",
                show_label=False,
                elem_classes=["prompt-textbox"],
                lines=3
            )
            image_input = gr.Image(type="filepath", label="Upload Image (Optional)")

        with gr.Row():
            run_button = gr.Button("🎨 Generate", variant="primary", size="lg")

        with gr.Row(elem_classes=["preset-buttons"]):
            preset_high_res = gr.Button("📺 Higher Resolution Preset")
            preset_more_frames = gr.Button("🎞️ More Frames Preset")

        with gr.Row():
            result = gr.Video(label="Generated Video")

        with gr.Accordion("⚙️ Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed (-1 for random)",
                minimum=-1,
                maximum=MAX_SEED,
                step=1,
                value=-1,
            )

            with gr.Row():
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=16,
                    value=608,
                )
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=16,
                    value=448,
                )

            with gr.Row():
                num_frames = gr.Slider(
                    label="Number of frames",
                    minimum=1.0,
                    maximum=257.0,
                    step=1,
                    value=24,
                )
                num_inference_steps = gr.Slider(
                    label="Inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=29,
                )
                fps = gr.Slider(
                    label="Frames per second",
                    minimum=1,
                    maximum=60,
                    step=1,
                    value=12,
                )

            with gr.Column(elem_classes=["lora-sliders"]):
                gr.Markdown("### LoRA Adapters")
                lora_checkboxes = gr.CheckboxGroup(
                    label="Select LoRAs",
                    choices=[display for (_, display) in LORA_CHOICES],
                    value=["Stripe Style", "Top Off Effect"]
                )
                lora_weight_sliders = []
                for _, display_name in LORA_CHOICES:
                    lora_weight_sliders.append(
                        gr.Slider(
                            label=f"{display_name} Weight",
                            minimum=0.0,
                            maximum=1.0,
                            value=0.9 if "Stripe" in display_name else 0.8,
                            visible=False
                        )
                    )

    # Event handling
    run_button.click(
        fn=generate,
        inputs=[prompt, image_input, height, width, num_frames,
                num_inference_steps, seed, fps, lora_checkboxes, lora_weight_sliders],
        outputs=[result],
    )

    # Preset button handlers
    preset_high_res.click(
        fn=lambda: apply_preset("Higher Resolution"),
        outputs=[height, width, num_frames, num_inference_steps, fps]
    )
    preset_more_frames.click(
        fn=lambda: apply_preset("More Frames"),
        outputs=[height, width, num_frames, num_inference_steps, fps]
    )

    # Show/hide LORA weight sliders based on checkbox selection
    def toggle_lora_sliders(selected_loras):
        updates = []
        for lora in LORA_CHOICES:
            updates.append(gr.update(visible=lora[1] in selected_loras))
        return updates

    lora_checkboxes.change(
        fn=toggle_lora_sliders,
        inputs=lora_checkboxes,
        outputs=lora_weight_sliders
    )