File size: 3,818 Bytes
8c029ff
 
 
 
7f7ba92
8c029ff
625f637
4e84396
7f7ba92
 
4e84396
7f7ba92
8bd6e7a
7f7ba92
8c029ff
 
 
 
 
 
 
 
8216a78
625f637
8c029ff
 
 
 
 
 
7f7ba92
 
8c029ff
 
 
 
 
 
 
 
4e84396
8c029ff
 
4e84396
8c029ff
 
 
 
7f7ba92
8c029ff
 
 
 
 
 
 
 
 
 
 
 
7f7ba92
8c029ff
7f7ba92
 
8bd6e7a
 
7f7ba92
 
 
 
 
 
 
 
 
4e84396
7f7ba92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e84396
7f7ba92
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

DESCRIPTION = """\
# Qwen2 0.5B Instruct Text Completion

This is a demo of [`Qwen/Qwen2-0.5B-Instruct`](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct), fine-tuned for instruction following.

Enter your text in the box below and click "Complete" to have the AI generate a completion for your input. The generated text will be appended to your input. You can stop the generation at any time by clicking the "Stop" button.
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "Qwen/Qwen2-0.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

@spaces.GPU(duration=90)
def generate(
    message: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    input_ids = tokenizer.encode(message, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    partial_message = message
    for text in streamer:
        partial_message += text
        yield partial_message

with gr.Blocks(css="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")

    with gr.Row():
        with gr.Column(scale=4):
            text_box = gr.Textbox(
                label="Enter your text",
                placeholder="Type your message here...",
                lines=5
            )
        with gr.Column(scale=1):
            complete_button = gr.Button("Complete")
            stop_button = gr.Button("Stop")

    max_new_tokens = gr.Slider(
        label="Max new tokens",
        minimum=1,
        maximum=MAX_MAX_NEW_TOKENS,
        step=1,
        value=DEFAULT_MAX_NEW_TOKENS,
    )
    temperature = gr.Slider(
        label="Temperature",
        minimum=0.1,
        maximum=4.0,
        step=0.1,
        value=0.6,
    )
    top_p = gr.Slider(
        label="Top-p (nucleus sampling)",
        minimum=0.05,
        maximum=1.0,
        step=0.05,
        value=0.9,
    )
    top_k = gr.Slider(
        label="Top-k",
        minimum=1,
        maximum=1000,
        step=1,
        value=50,
    )
    repetition_penalty = gr.Slider(
        label="Repetition penalty",
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        value=1.2,
    )

    complete_button.click(
        generate,
        inputs=[text_box, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[text_box],
    )
    stop_button.click(
        None,
        None,
        None,
        cancels=[complete_button.click]
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()