Spaces:
Runtime error
Runtime error
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
DESCRIPTION = """\ | |
# Qwen 0.5B Text Completion | |
This is a demo of [`Qwen/Qwen2-0.5B-Instruct`](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct), a lightweight language model fine-tuned for instruction following. | |
This space allows you to input text and have the AI complete it. Simply type your text in the input box, click "Complete", and watch as the AI generates a continuation of your text. | |
You can adjust various parameters such as temperature and top-p sampling to control the generation process. | |
Note: You may see a warning about bitsandbytes being compiled without GPU support. This is expected in environments without GPU and does not affect the basic functionality of the demo. | |
""" | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = "Qwen/Qwen2-0.5B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
def generate( | |
message: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
input_ids = tokenizer.encode(message, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
full_message = message | |
for text in streamer: | |
full_message += text | |
yield full_message | |
with gr.Blocks(css="style.css", fill_height=True) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
text_box = gr.Textbox( | |
label="Enter your text", | |
placeholder="Type your message here...", | |
lines=10 | |
) | |
with gr.Column(scale=1): | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
) | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
) | |
top_k = gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
) | |
with gr.Row(): | |
complete_btn = gr.Button("Complete") | |
stop_btn = gr.Button("Stop Generation") | |
stop_click = stop_btn.click(fn=None, cancels=[complete_btn.click]) | |
complete_btn.click( | |
fn=generate, | |
inputs=[ | |
text_box, | |
max_new_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repetition_penalty | |
], | |
outputs=text_box | |
) | |
gr.Examples( | |
examples=[ | |
"Hello there! How are you doing?", | |
"Can you explain briefly to me what is the Python programming language?", | |
"Explain the plot of Cinderella in a sentence.", | |
"How many hours does it take a man to eat a Helicopter?", | |
"Write a 100-word article on 'Benefits of Open-Source in AI research'", | |
], | |
inputs=text_box | |
) | |
if __name__ == "__main__": | |
demo = gr.Blocks(css="style.css", fill_height=True) | |
demo.queue(max_size=20).launch() | |