Spaces:
Runtime error
Runtime error
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
DESCRIPTION = """\ | |
# Llama backend | |
This is a demo of text completion with AI LLM's. | |
Enter your text in the box below and click "Complete" to have the AI generate a completion for your input. The generated text will be appended to your input. You can stop the generation at any time by clicking the "Stop" button. | |
""" | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = "meta-llama/Llama-3.1-8B" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
load_in_8bit=True, | |
) | |
model.eval() | |
def generate( | |
message: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.1, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
prompt = f"{message}" | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = message | |
for text in streamer: | |
partial_message += text | |
yield partial_message | |
with gr.Blocks(css="style.css", fill_height=True) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
text_box = gr.Textbox( | |
label="Enter your text", | |
placeholder="Type your message here...", | |
lines=5 | |
) | |
with gr.Column(scale=1): | |
complete_button = gr.Button("Complete") | |
stop_button = gr.Button("Stop") | |
max_new_tokens = gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.1, | |
) | |
top_p = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
) | |
top_k = gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=100, # Changed from 1000 to 100 | |
step=1, | |
value=50, | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
) | |
# Set up the generation event | |
generation_event = complete_button.click( | |
generate, | |
inputs=[text_box, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[text_box], | |
) | |
# Set up the stop event | |
stop_button.click( | |
None, | |
None, | |
None, | |
cancels=[generation_event] | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |