hftestbackend / app.py
Sergidev's picture
Update app.py
66f04b1 verified
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """\
# Llama backend
This is a demo of text completion with AI LLM's.
Enter your text in the box below and click "Complete" to have the AI generate a completion for your input. The generated text will be appended to your input. You can stop the generation at any time by clicking the "Stop" button.
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "meta-llama/Llama-3.1-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16,
load_in_8bit=True,
)
model.eval()
@spaces.GPU
def generate(
message: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.1,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
prompt = f"{message}"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
partial_message = message
for text in streamer:
partial_message += text
yield partial_message
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
with gr.Row():
with gr.Column(scale=4):
text_box = gr.Textbox(
label="Enter your text",
placeholder="Type your message here...",
lines=5
)
with gr.Column(scale=1):
complete_button = gr.Button("Complete")
stop_button = gr.Button("Stop")
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.1,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
)
top_k = gr.Slider(
label="Top-k",
minimum=1,
maximum=100, # Changed from 1000 to 100
step=1,
value=50,
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
)
# Set up the generation event
generation_event = complete_button.click(
generate,
inputs=[text_box, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[text_box],
)
# Set up the stop event
stop_button.click(
None,
None,
None,
cancels=[generation_event]
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()