import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer DESCRIPTION = """\ # Llama backend This is a demo of text completion with AI LLM's. Enter your text in the box below and click "Complete" to have the AI generate a completion for your input. The generated text will be appended to your input. You can stop the generation at any time by clicking the "Stop" button. """ MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "meta-llama/Llama-3.1-8B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.float16, load_in_8bit=True, ) model.eval() @spaces.GPU def generate( message: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.1, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: prompt = f"{message}" input_ids = tokenizer.encode(prompt, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_message = message for text in streamer: partial_message += text yield partial_message with gr.Blocks(css="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") with gr.Row(): with gr.Column(scale=4): text_box = gr.Textbox( label="Enter your text", placeholder="Type your message here...", lines=5 ) with gr.Column(scale=1): complete_button = gr.Button("Complete") stop_button = gr.Button("Stop") max_new_tokens = gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ) temperature = gr.Slider( label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.1, ) top_p = gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ) top_k = gr.Slider( label="Top-k", minimum=1, maximum=100, # Changed from 1000 to 100 step=1, value=50, ) repetition_penalty = gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ) # Set up the generation event generation_event = complete_button.click( generate, inputs=[text_box, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[text_box], ) # Set up the stop event stop_button.click( None, None, None, cancels=[generation_event] ) if __name__ == "__main__": demo.queue(max_size=20).launch()