import streamlit as st from intent_classifier.model import IntentClassifier @st.cache_resource def load_model(model_name="Serj/intent-classifier", device=None): # st.write(f"model path: {model_name}") m = IntentClassifier(model_name=model_name, device=device) return m model = load_model() st.title("Simple Labels") # text = "Hey, I want to stop my subscription. Can I do that?" text = "How do I get my money back?" input = st.text_area("text", value=text) prompt_options = st.text_area("prompt_options", value="# renew subscription # account deletion # cancel subscription # resume subscription # refund requests # other # general # item damaged # malfunction # hello # intro # question") is_clicked = st.button("Submit", key="submit smile") if is_clicked: output = model.predict(input, prompt_options) st.write(output) st.title("Complex labels") text = "I was expecting my card to get this week and I'm wandering why didn't I receive it yet?" input = st.text_area("text", value=text) prompt_options_values = " # how do I locate my card # my card hasn't arrived yet # I would like to reactivate my card # where do I link my card? # How do I re add my card? # how do I add the card to my account? # status of the card order " prompt_options = st.text_area("prompt_options", value=prompt_options_values) is_clicked = st.button("Submit", key="submit complex") if is_clicked: output = model.structured_predict(input, prompt_options, print_input=True) st.write(output)