import sys sys.path.append('../../lutil/') from aimakerspace.openai_utils.prompts import ( UserRolePrompt, SystemRolePrompt, AssistantRolePrompt, ) from aimakerspace.openai_utils.chatmodel import ChatOpenAI from aimakerspace.vectordatabase import VectorDatabase import datetime from wandb.sdk.data_types.trace_tree import Trace from wandb import init as winit RAQA_PROMPT_TEMPLATE = """ Use the provided context to answer the user's query. You may not answer the user's query unless there is specific context in the following text. If you do not know the answer, or cannot answer, please respond with "I don't know". Context: {context} """ raqa_prompt = SystemRolePrompt(RAQA_PROMPT_TEMPLATE) USER_PROMPT_TEMPLATE = """ User Query: {user_query} """ user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE) class RetrievalAugmentedQAPipeline: def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase, wandb_project = None) -> None: self.llm = llm self.vector_db_retriever = vector_db_retriever self.wandb_project = wandb_project winit(project="RAQ in pure python HF") def run_pipeline(self, user_query: str) -> str: context_list = self.vector_db_retriever.search_by_text(user_query, k=4) context_prompt = "" for context in context_list: context_prompt += context[0] + "\n" formatted_system_prompt = raqa_prompt.create_message(context=context_prompt) formatted_user_prompt = user_prompt.create_message(user_query=user_query) start_time = datetime.datetime.now().timestamp() * 1000 try: openai_response = self.llm.run([formatted_system_prompt, formatted_user_prompt], text_only=False) end_time = datetime.datetime.now().timestamp() * 1000 status = "success" status_message = (None, ) response_text = openai_response.choices[0].message.content token_usage = openai_response["usage"].to_dict() model = openai_response["model"] except Exception as e: end_time = datetime.datetime.now().timestamp() * 1000 status = "error" status_message = str(e) response_text = "" token_usage = {} model = "" if self.wandb_project: root_span = Trace( name="root_span", kind="llm", status_code=status, status_message=status_message, start_time_ms=start_time, end_time_ms=end_time, metadata={ "token_usage" : token_usage, "model_name" : model }, inputs= {"system_prompt" : formatted_system_prompt, "user_prompt" : formatted_user_prompt}, outputs= {"response" : response_text} ) root_span.log(name="openai_trace") return response_text if response_text else "We ran into an error. Please try again later. Full Error Message: " + status_message