# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) import sys import os sys.path.append('../../lutil') import openai # importing openai for API usage import chainlit as cl # importing chainlit for our app from chainlit.prompt import Prompt, PromptMessage # importing prompt tools from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools from dotenv import load_dotenv from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter from aimakerspace.vectordatabase import VectorDatabase import asyncio from raq_qa_reterieval_wandb import RetrievalAugmentedQAPipeline,raqa_prompt,user_prompt from aimakerspace.openai_utils.chatmodel import ChatOpenAI import wandb load_dotenv() openai.api_key = os.environ["OPENAI_API_KEY"] os.environ["WANDB_API_KEY"] = os.environ["WANDB_API_KEY"] @cl.on_chat_start # marks a function that will be executed at the start of a user session async def start_chat(): msg = cl.Message( content=f"Loading Dataset ...", disable_human_feedback=True ) await msg.send() text_loader = TextFileLoader("../../data/KingLear.txt") documents = text_loader.load_documents() text_splitter = CharacterTextSplitter() split_documents = text_splitter.split_texts(documents) vector_db = VectorDatabase() vector_db = asyncio.run(vector_db.abuild_from_list(split_documents)) chat_openai = ChatOpenAI() retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( vector_db_retriever=vector_db, llm=chat_openai, wandb_project="RAQ in pure python HF") msg.content = f"Dataset loading is done. You can now ask questions!" await msg.update() cl.user_session.set("chain", retrieval_augmented_qa_pipeline) @cl.on_message # marks a function that should be run each time the chatbot receives a message from a user async def main(message: str): # settings = cl.user_session.get("settings") chain = cl.user_session.get("chain") output = chain.run_pipeline(message) print(output) msg = cl.Message(content=f"{output}") # msg.prompt = output await msg.send()