File size: 9,198 Bytes
f6b99ca
 
 
 
 
 
 
 
 
 
 
 
2ce979c
f6b99ca
 
 
 
 
 
 
2ce979c
f6b99ca
 
 
 
 
 
 
 
 
 
2ce979c
f6b99ca
 
 
 
 
2ce979c
f6b99ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ce979c
f6b99ca
2ce979c
f6b99ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ce979c
f6b99ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ce979c
f6b99ca
 
2ce979c
f6b99ca
 
 
 
 
 
 
 
 
2ce979c
f6b99ca
 
2ce979c
f6b99ca
 
 
 
 
 
 
 
 
 
 
 
2ce979c
 
f6b99ca
 
 
 
 
 
 
 
 
 
 
 
 
 
2ce979c
f6b99ca
 
2ce979c
f6b99ca
 
 
2ce979c
f6b99ca
 
 
 
 
 
2ce979c
f6b99ca
2ce979c
f6b99ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ce979c
f6b99ca
 
2ce979c
f6b99ca
2ce979c
f6b99ca
2ce979c
f6b99ca
2ce979c
f6b99ca
 
2ce979c
f6b99ca
2ce979c
f6b99ca
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import csv
import os
import time
from datetime import datetime
from queue import Queue
import threading

import pandas as pd
from gradio import ChatMessage
from huggingface_hub import HfApi, hf_hub_download

from timer import Timer
from utils import log_warning, log_info, log_debug, log_error

HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_REPO_ID = os.environ.get("APRIEL_PROMPT_DATASET")
CSV_FILENAME = "train.csv"


def log_chat(chat_id: str, session_id: str, model_name: str, prompt: str, history: list[str], info: dict) -> None:
    log_info(f"log_chat() called for chat: {chat_id}, queue size: {log_chat_queue.qsize()}, model: {model_name}")
    log_chat_queue.put((chat_id, session_id, model_name, prompt, history, info))


def _log_chat_worker():
    while True:
        chat_id, session_id, model_name, prompt, history, info = log_chat_queue.get()
        try:
            try:
                _log_chat(chat_id, session_id, model_name, prompt, history, info)
            except Exception as e:
                log_error(f"Error logging chat: {e}")
        finally:
            log_chat_queue.task_done()


def _log_chat(chat_id: str, session_id: str, model_name: str, prompt: str, history: list[str], info: dict) -> bool:
    log_info(f"_log_chat() storing chat {chat_id}")
    if DATASET_REPO_ID is None:
        log_warning("No dataset repo ID provided. Skipping logging of prompt.")
        return False
    if HF_TOKEN is None:
        log_warning("No HF token provided. Skipping logging of prompt.")
        return False

    log_timer = Timer('log_chat')
    log_timer.start()

    # Initialize HF API
    api = HfApi(token=HF_TOKEN)

    # Check if the dataset repo exists, if not, create it
    try:
        repo_info = api.repo_info(repo_id=DATASET_REPO_ID, repo_type="dataset")
        log_debug(f"log_chat() --> Dataset repo found: {repo_info.id} private={repo_info.private}")
    except Exception:  # Create new dataset if none exists
        log_debug(f"log_chat() --> No dataset repo found, creating a new one...")
        api.create_repo(repo_id=DATASET_REPO_ID, repo_type="dataset", private=True)

    # Ensure messages are in the correct format
    messages = [
        {"role": item.role, "content": item.content,
         "type": "thought" if item.metadata else "completion"} if isinstance(
            item, ChatMessage) else item
        for item in history
        if isinstance(item, dict) and "role" in item and "content" in item or isinstance(item, ChatMessage)
    ]
    if len(messages) != len(history):
        log_warning("log_chat() --> Some messages in history are missing 'role' or 'content' keys.")

    user_messages_count = sum(1 for item in messages if isinstance(item, dict) and item.get("role") == "user")

    # These must match the keys in the new row
    expected_headers = ["timestamp", "chat_id", "turns", "prompt", "messages", "model", "session_id", "info"]
    # Prepare new data row
    new_row = {
        "timestamp": datetime.now().isoformat(),
        "chat_id": chat_id,
        "turns": user_messages_count,
        "prompt": prompt,
        "messages": messages,
        "model": model_name,
        "session_id": session_id,
        "info": info,
    }
    log_timer.add_step("Prepared new data row")

    # Try to download existing CSV with retry logic
    max_retries = 3
    retry_count = 0
    file_exists = False
    while retry_count < max_retries:
        try:
            csv_path = hf_hub_download(
                repo_id=DATASET_REPO_ID,
                filename=CSV_FILENAME,
                repo_type="dataset",
                token=HF_TOKEN  # Only needed if not already logged in
            )
            pd.read_csv(csv_path)
            file_exists = True
            log_debug(f"log_chat() --> Downloaded existing CSV with {len(pd.read_csv(csv_path))} rows")
            break  # Success, exit the loop
        except Exception as e:
            retry_count += 1
            if retry_count < max_retries:
                retry_delay = 2 * retry_count  # Exponential backoff: 2s, 4s, 6s, 8s
                log_warning(
                    f"log_chat() --> Download attempt {retry_count} failed: {e}. Retrying in {retry_delay} seconds...")
                time.sleep(retry_delay)
            else:
                log_warning(f"log_chat() --> Failed to download CSV after {max_retries} attempts: {e}")
        file_exists = False

    log_timer.add_step(f"Downloaded existing CSV (attempts: {retry_count + 1})")

    # Handle the case where the CSV file does not exist or is invalid
    if file_exists and len(pd.read_csv(csv_path)) == 0:
        log_warning(f"log_chat() --> CSV {csv_path} exists but is empty, will create a new one.")
        dump_hub_csv()
        file_exists = False
    elif file_exists:
        # Check that the headers match our standard headers of "timestamp", "chat_id", "turns", ...
        existing_headers = pd.read_csv(csv_path).columns.tolist()
        if set(existing_headers) != set(expected_headers):
            log_warning(f"log_chat() --> CSV {csv_path} has unexpected headers: {existing_headers}. "
                        f"\nExpected {existing_headers} "
                        f"Will create a new one.")
            dump_hub_csv()
            file_exists = False
        else:
            log_debug(f"log_chat() --> CSV {csv_path} has expected headers: {existing_headers}")

    # Write out the new row to the CSV file (append isn't working in HF container, so recreate each time)
    log_debug(f"log_chat() --> Writing CSV file, file_exists={file_exists}")
    try:
        with open(CSV_FILENAME, "w", newline="\n") as f:
            writer = csv.DictWriter(f, fieldnames=new_row.keys())
            writer.writeheader()  # Always write the header
            if file_exists:
                for _, row in pd.read_csv(csv_path).iterrows():
                    writer.writerow(row.to_dict())  # Write existing rows
            writer.writerow(new_row)  # Write the new row

        log_debug("log_chat() --> Wrote out CSV with new row")
        # dump_local_csv()
    except Exception as e:
        log_error(f"log_chat() --> Error writing to CSV: {e}")
        return False

    # Upload updated CSV
    api.upload_file(
        path_or_fileobj=CSV_FILENAME,
        path_in_repo=CSV_FILENAME,
        repo_id=DATASET_REPO_ID,
        repo_type="dataset",
        commit_message=f"Added new chat entry at {datetime.now().isoformat()}"
    )
    log_timer.add_step("Uploaded updated CSV")
    log_timer.end()
    log_debug("log_chat() --> Finished logging chat")
    log_debug(log_timer.formatted_result())

    return True


def dump_hub_csv():
    # Verify the file contents by loading it from the hub and printing it out
    try:
        csv_path = hf_hub_download(
            repo_id=DATASET_REPO_ID,
            filename=CSV_FILENAME,
            repo_type="dataset",
            token=HF_TOKEN  # Only needed if not already logged in
        )
        df = pd.read_csv(csv_path)
        log_info(df)
        if (df.empty):
            # show raw contents of downloaded csv file
            log_info("Raw file contents:")
            with open(csv_path, 'r') as f:
                print(f.read())
    except Exception as e:
        log_error(f"Error loading CSV from hub: {e}")


def dump_local_csv():
    # Verify the file contents by loading it from the local file and printing it out
    try:
        df = pd.read_csv(CSV_FILENAME)
        log_info(df)
    except Exception as e:
        log_error(f"Error loading CSV from local file: {e}")


def test_log_chat():
    # Example usage
    chat_id = "12345"
    session_id = "67890"
    model_name = "Apriel-Model"
    prompt = "Hello"
    history = [{"role": "user", "content": prompt}, {"role": "assistant", "content": "Hi there!"}]
    prompt = "100 + 1"
    history = [{'role': 'user', 'content': prompt}, ChatMessage(
        content='Okay, that\'s a simple addition problem. , answer is 2.\n', role='assistant',
        metadata={'title': '🧠 Thought'}, options=[]),
               ChatMessage(content='\nThe result of adding 1 and 1 is:\n\n**2**\n', role='assistant', metadata={},
                           options=[])
               ]
    info = {"additional_info": "Some extra data"}

    log_debug("Starting test_log_chat()")
    dump_hub_csv()
    log_chat(chat_id, session_id, model_name, prompt, history, info)
    log_debug("log_chat 1 returned")
    log_chat(chat_id, session_id, model_name, prompt + " + 2", history, info)
    log_debug("log_chat 2 returned")
    log_chat(chat_id, session_id, model_name, prompt + " + 3", history, info)
    log_debug("log_chat 3 returned")
    log_chat(chat_id, session_id, model_name, prompt + " + 4", history, info)
    log_debug("log_chat 4 returned")

    sleep_seconds = 10
    log_debug(f"Sleeping {sleep_seconds} seconds to let it finish and log the result.")
    time.sleep(sleep_seconds)
    log_debug("Finished sleeping.")
    dump_hub_csv()


# Create a queue for logging chat messages
log_chat_queue = Queue()

# Start the worker thread
threading.Thread(target=_log_chat_worker, daemon=True).start()

if __name__ == "__main__":
    test_log_chat()