Apriel-Chat / app.py
bradnow's picture
Improve logging for normal operation
2ce979c
raw
history blame
15 kB
import datetime
from uuid import uuid4
from openai import OpenAI
import gradio as gr
from theme import apriel
from utils import COMMUNITY_POSTFIX_URL, get_model_config, check_format, models_config, \
logged_event_handler, DEBUG_MODEL, log_debug, log_info, log_error
from log_chat import log_chat
MODEL_TEMPERATURE = 0.8
BUTTON_WIDTH = 160
DEFAULT_OPT_OUT_VALUE = False
DEFAULT_MODEL_NAME = "Apriel-Nemotron-15b-Thinker" if not DEBUG_MODEL else "Apriel-5b"
BUTTON_ENABLED = gr.update(interactive=True)
BUTTON_DISABLED = gr.update(interactive=False)
INPUT_ENABLED = gr.update(interactive=True)
INPUT_DISABLED = gr.update(interactive=False)
DROPDOWN_ENABLED = gr.update(interactive=True)
DROPDOWN_DISABLED = gr.update(interactive=False)
SEND_BUTTON_ENABLED = gr.update(interactive=True, visible=True)
SEND_BUTTON_DISABLED = gr.update(interactive=True, visible=False)
STOP_BUTTON_ENABLED = gr.update(interactive=True, visible=True)
STOP_BUTTON_DISABLED = gr.update(interactive=True, visible=False)
chat_start_count = 0
model_config = {}
openai_client = None
def app_loaded(state, request: gr.Request):
message_html = setup_model(DEFAULT_MODEL_NAME, intial=False)
state['session'] = request.session_hash if request else uuid4().hex
log_debug(f"app_loaded() --> Session: {state['session']}")
return state, message_html
def update_model_and_clear_chat(model_name):
actual_model_name = model_name.replace("Model: ", "")
desc = setup_model(actual_model_name)
return desc, []
def setup_model(model_name, intial=False):
global model_config, openai_client
model_config = get_model_config(model_name)
log_debug(f"update_model() --> Model config: {model_config}")
openai_client = OpenAI(
api_key=model_config.get('AUTH_TOKEN'),
base_url=model_config.get('VLLM_API_URL')
)
_model_hf_name = model_config.get("MODEL_HF_URL").split('https://huggingface.co/')[1]
_link = f"<a href='{model_config.get('MODEL_HF_URL')}{COMMUNITY_POSTFIX_URL}' target='_blank'>{_model_hf_name}</a>"
_description = f"We'd love to hear your thoughts on the model. Click here to provide feedback - {_link}"
log_debug(f"Switched to model {_model_hf_name}")
if intial:
return
else:
return _description
def chat_started():
# outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn
return (DROPDOWN_DISABLED, gr.update(value="", interactive=False),
SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED)
def chat_finished():
# outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn
return DROPDOWN_ENABLED, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED
def stop_chat(state):
state["stop_flag"] = True
gr.Info("Chat stopped")
return state
def toggle_opt_out(state, checkbox):
state["opt_out"] = checkbox
return state
def run_chat_inference(history, message, state):
global chat_start_count
state["is_streaming"] = True
state["stop_flag"] = False
error = None
model_name = model_config.get('MODEL_NAME')
if len(history) == 0:
state["chat_id"] = uuid4().hex
if openai_client is None:
log_info("Client UI is stale, letting user know to refresh the page")
gr.Warning("Client UI is stale, please refresh the page")
return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
# outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, session_state
log_debug(f"{'-' * 80}")
log_debug(f"chat_fn() --> Message: {message}")
log_debug(f"chat_fn() --> History: {history}")
try:
# Check if the message is empty
if not message.strip():
gr.Info("Please enter a message before sending")
yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
chat_start_count = chat_start_count + 1
log_info(f"chat_start_count: {chat_start_count}, turns: {int(len(history if history else []) / 3)}, "
f"model: {model_name}")
is_reasoning = model_config.get("REASONING")
# Remove any assistant messages with metadata from history for multiple turns
log_debug(f"Initial History: {history}")
check_format(history, "messages")
history.append({"role": "user", "content": message})
log_debug(f"History with user message: {history}")
check_format(history, "messages")
# Create the streaming response
try:
history_no_thoughts = [item for item in history if
not (isinstance(item, dict) and
item.get("role") == "assistant" and
isinstance(item.get("metadata"), dict) and
item.get("metadata", {}).get("title") is not None)]
log_debug(f"Updated History: {history_no_thoughts}")
check_format(history_no_thoughts, "messages")
log_debug(f"history_no_thoughts with user message: {history_no_thoughts}")
stream = openai_client.chat.completions.create(
model=model_name,
messages=history_no_thoughts,
temperature=MODEL_TEMPERATURE,
stream=True
)
except Exception as e:
log_error(f"Error: {e}")
error = str(e)
yield ([{"role": "assistant",
"content": "😔 The model is unavailable at the moment. Please try again later."}],
INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state)
if state["opt_out"] is not True:
log_chat(chat_id=state["chat_id"],
session_id=state["session"],
model_name=model_name,
prompt=message,
history=history,
info={"is_reasoning": model_config.get("REASONING"), "temperature": MODEL_TEMPERATURE,
"stopped": True, "error": str(e)},
)
else:
log_info(f"User opted out of chat history. Not logging chat. model: {model_name}")
return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
if is_reasoning:
history.append(gr.ChatMessage(
role="assistant",
content="Thinking...",
metadata={"title": "🧠 Thought"}
))
log_debug(f"History added thinking: {history}")
check_format(history, "messages")
else:
history.append(gr.ChatMessage(
role="assistant",
content="",
))
log_debug(f"History added empty assistant: {history}")
check_format(history, "messages")
output = ""
completion_started = False
for chunk in stream:
if state["stop_flag"]:
log_debug(f"chat_fn() --> Stopping streaming...")
break # Exit the loop if the stop flag is set
# Extract the new content from the delta field
content = getattr(chunk.choices[0].delta, "content", "")
output += content
if is_reasoning:
parts = output.split("[BEGIN FINAL RESPONSE]")
if len(parts) > 1:
if parts[1].endswith("[END FINAL RESPONSE]"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]", "")
if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>", "")
if parts[1].endswith("<|end|>"):
parts[1] = parts[1].replace("<|end|>", "")
history[-1 if not completion_started else -2] = gr.ChatMessage(
role="assistant",
content=parts[0],
metadata={"title": "🧠 Thought"}
)
if completion_started:
history[-1] = gr.ChatMessage(
role="assistant",
content=parts[1]
)
elif len(parts) > 1 and not completion_started:
completion_started = True
history.append(gr.ChatMessage(
role="assistant",
content=parts[1]
))
else:
if output.endswith("<|end|>"):
output = output.replace("<|end|>", "")
history[-1] = gr.ChatMessage(
role="assistant",
content=output
)
# log_message(f"Yielding messages: {history}")
yield history, INPUT_DISABLED, SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED, state
log_debug(f"Final History: {history}")
check_format(history, "messages")
yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
finally:
if error is None:
log_debug(f"chat_fn() --> Finished streaming. {chat_start_count} chats started.")
if state["opt_out"] is not True:
log_chat(chat_id=state["chat_id"],
session_id=state["session"],
model_name=model_name,
prompt=message,
history=history,
info={"is_reasoning": model_config.get("REASONING"), "temperature": MODEL_TEMPERATURE,
"stopped": state["stop_flag"]},
)
else:
log_info(f"User opted out of chat history. Not logging chat. model: {model_name}")
state["is_streaming"] = False
state["stop_flag"] = False
return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
log_info(f"Gradio version: {gr.__version__}")
title = None
description = None
theme = apriel
with open('styles.css', 'r') as f:
custom_css = f.read()
with gr.Blocks(theme=theme, css=custom_css) as demo:
session_state = gr.State(value={
"is_streaming": False,
"stop_flag": False,
"chat_id": None,
"session": None,
"opt_out": DEFAULT_OPT_OUT_VALUE,
}) # Store session state as a dictionary
gr.HTML(f"""
<style>
@media (min-width: 1024px) {{
.send-button-container, .clear-button-container {{
max-width: {BUTTON_WIDTH}px;
}}
}}
</style>
""", elem_classes="css-styles")
with gr.Row(variant="panel", elem_classes="responsive-row"):
with gr.Column(scale=1, min_width=400, elem_classes="model-dropdown-container"):
model_dropdown = gr.Dropdown(
choices=[f"Model: {model}" for model in models_config.keys()],
value=f"Model: {DEFAULT_MODEL_NAME}",
label=None,
interactive=True,
container=False,
scale=0,
min_width=400
)
with gr.Column(scale=4, min_width=0):
feedback_message_html = gr.HTML(description, elem_classes="model-message")
chatbot = gr.Chatbot(
type="messages",
height="calc(100dvh - 310px)",
elem_classes="chatbot",
)
with gr.Row():
with gr.Column(scale=10, min_width=400):
with gr.Row():
user_input = gr.Textbox(
show_label=False,
placeholder="Type your message here and press Enter",
container=False
)
with gr.Column(scale=1, min_width=BUTTON_WIDTH * 2 + 20):
with gr.Row():
with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="send-button-container"):
send_btn = gr.Button("Send", variant="primary")
stop_btn = gr.Button("Stop", variant="cancel", visible=False)
with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="clear-button-container"):
clear_btn = gr.ClearButton(chatbot, value="New Chat", variant="secondary")
with gr.Row():
with gr.Column(min_width=400, elem_classes="opt-out-container"):
with gr.Row():
gr.HTML(
"We may use your chats to improve our AI. You may opt out if you don’t want your conversations saved.",
elem_classes="opt-out-message")
with gr.Row():
opt_out_checkbox = gr.Checkbox(
label="Don’t save my chat history for improvements or training",
value=DEFAULT_OPT_OUT_VALUE,
elem_classes="opt-out-checkbox",
interactive=True,
container=False
)
gr.on(
triggers=[send_btn.click, user_input.submit],
fn=run_chat_inference, # this generator streams results. do not use logged_event_handler wrapper
inputs=[chatbot, user_input, session_state],
outputs=[chatbot, user_input, send_btn, stop_btn, clear_btn, session_state],
concurrency_limit=4,
api_name=False
).then(
fn=chat_finished, inputs=None, outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn], queue=False)
# In parallel, disable or update the UI controls
gr.on(
triggers=[send_btn.click, user_input.submit],
fn=chat_started,
inputs=None,
outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn],
queue=False,
show_progress='hidden',
api_name=False
)
stop_btn.click(
fn=stop_chat,
inputs=[session_state],
outputs=[session_state],
api_name=False
)
opt_out_checkbox.change(fn=toggle_opt_out, inputs=[session_state, opt_out_checkbox], outputs=[session_state])
# Ensure the model is reset to default on page reload
demo.load(
fn=logged_event_handler(
log_msg="Browser session started",
event_handler=app_loaded
),
inputs=[session_state],
outputs=[session_state, feedback_message_html],
queue=True,
api_name=False
)
model_dropdown.change(
fn=update_model_and_clear_chat,
inputs=[model_dropdown],
outputs=[feedback_message_html, chatbot],
api_name=False
)
demo.queue(default_concurrency_limit=2).launch(ssr_mode=False, show_api=False)
log_info("Gradio app launched")