bradnow commited on
Commit
31bd9a2
·
verified ·
1 Parent(s): 46c251e

Update chat to use secrets

Browse files
Files changed (1) hide show
  1. app.py +56 -60
app.py CHANGED
@@ -1,64 +1,60 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
  import gradio as gr
3
+ from openai import OpenAI
4
+
5
+ title = None # "ServiceNow-AI Chat"
6
+ description = None
7
+
8
+ modelConfig = {
9
+ "MODEL_NAME": os.environ.get("MODEL_NAME"),
10
+ "MODE_DISPLAY_NAME": os.environ.get("MODE_DISPLAY_NAME"),
11
+ "MODEL_HF_URL": os.environ.get("MODEL_HF_URL"),
12
+ "VLLM_API_URL": os.environ.get("VLLM_API_URL"),
13
+ "AUTH_TOKEN": os.environ.get("AUTH_TOKEN")
14
+ }
15
+
16
+ # Initialize the OpenAI client with the vLLM API URL and token
17
+ client = OpenAI(
18
+ api_key=modelConfig.get('AUTH_TOKEN'),
19
+ base_url=modelConfig.get('VLLM_API_URL')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  )
21
 
22
 
23
+ def chat_fn(message, history):
24
+ # Format history as OpenAI expects
25
+ formatted = [{"role": "user", "content": user} if i % 2 == 0 else {"role": "assistant", "content": assistant}
26
+ for i, (user, assistant) in enumerate(history)]
27
+ formatted.append({"role": "user", "content": message})
28
+
29
+ # Create the streaming response
30
+ stream = client.chat.completions.create(
31
+ model=modelConfig.get('MODEL_NAME'),
32
+ messages=formatted,
33
+ temperature=0.8,
34
+ stream=True
35
+ )
36
+
37
+ output = ""
38
+ for chunk in stream:
39
+ # Extract the new content from the delta field
40
+ content = getattr(chunk.choices[0].delta, "content", "")
41
+ output += content
42
+ # Yield the current accumulated output, removing "<|end|>" if present
43
+ if output.endswith("<|end|>"):
44
+ yield {"role": "assistant", "content": output[:-7]}
45
+ else:
46
+ yield {"role": "assistant", "content": output}
47
+
48
+
49
+ # Add the model display name and Hugging Face URL to the description
50
+ # description = f"### Model: [{MODE_DISPLAY_NAME}]({MODEL_HF_URL})"
51
+
52
+ print(f"Running model {modelConfig.get('MODE_DISPLAY_NAME')} ({modelConfig.get('MODEL_NAME')})")
53
+
54
+ gr.ChatInterface(
55
+ chat_fn,
56
+ title=title,
57
+ description=description,
58
+ theme=gr.themes.Default(primary_hue="green"),
59
+ type="messages"
60
+ ).launch()