meghsn's picture
Security checks
b667dc2
raw
history blame
13.6 kB
import json
import re
import os
import streamlit as st
import requests
import pandas as pd
from io import StringIO
import plotly.graph_objs as go
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
import streamlit.components.v1 as components
from urllib.parse import quote
from pathlib import Path
import re
import html
from typing import Dict, Any
# BENCHMARKS = ["WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB", "WebArena"]
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB",]
def sanitize_agent_name(agent_name):
# Only allow alphanumeric chars, hyphen, underscore
if agent_name.startswith('.'):
raise ValueError("Agent name cannot start with a dot")
if not re.match("^[a-zA-Z0-9-_][a-zA-Z0-9-_.]*$", agent_name):
raise ValueError("Invalid agent name format")
return agent_name
def safe_path_join(*parts):
# Ensure we stay within results directory
base = Path("results").resolve()
try:
path = base.joinpath(*parts).resolve()
if not str(path).startswith(str(base)):
raise ValueError("Path traversal detected")
return path
except Exception:
raise ValueError("Invalid path")
def sanitize_column_name(col: str) -> str:
"""Sanitize column names for HTML display"""
return html.escape(str(col))
def sanitize_cell_value(value: Any) -> str:
"""Sanitize cell values for HTML display"""
if isinstance(value, (int, float)):
return str(value)
return html.escape(str(value))
def create_html_table_main(df):
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
html += f'<th>{sanitize_column_name(column)}</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
html += '<tr>'
for col in df.columns:
if col == "Agent":
html += f'<td>{row[col]}</td>'
else:
html += f'<td>{sanitize_cell_value(row[col])}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def create_html_table_benchmark(df):
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
if column != "Reproduced_all":
html += f'<th>{sanitize_column_name(column)}</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
html += '<tr>'
for column in df.columns:
if column == "Reproduced":
if row[column] == "-":
html += f'<td>{sanitize_cell_value(row[column])}</td>'
else:
summary = sanitize_cell_value(row[column])
details = "<br>".join(map(sanitize_cell_value, row["Reproduced_all"]))
html += f'<td><details><summary>{summary}</summary>{details}</details></td>'
elif column == "Reproduced_all":
continue
else:
html += f'<td>{sanitize_cell_value(row[column])}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def check_sanity(agent):
try:
safe_agent = sanitize_agent_name(agent)
for benchmark in BENCHMARKS:
file_path = safe_path_join(safe_agent, f"{benchmark.lower()}.json")
if not file_path.is_file():
continue
original_count = 0
with open(file_path) as f:
results = json.load(f)
for result in results:
if not all(key in result for key in ["agent_name", "benchmark", "original_or_reproduced", "score", "std_err", "benchmark_specific", "benchmark_tuned", "followed_evaluation_protocol", "reproducible", "comments", "study_id", "date_time"]):
return False
if result["agent_name"] != agent:
return False
if result["benchmark"] != benchmark:
return False
if result["original_or_reproduced"] == "Original":
original_count += 1
if original_count != 1:
return False
return True
except ValueError:
return False
def main():
st.set_page_config(page_title="BrowserGym Leaderboard", layout="wide", initial_sidebar_state="expanded")
st.markdown("""
<head>
<meta http-equiv="Content-Security-Policy"
content="default-src 'self' https://huggingface.co;
script-src 'self' 'unsafe-inline';
style-src 'self' 'unsafe-inline';
img-src 'self' data: https:;
frame-ancestors 'none';">
<meta http-equiv="X-Frame-Options" content="DENY">
<meta http-equiv="X-Content-Type-Options" content="nosniff">
<meta http-equiv="Referrer-Policy" content="strict-origin-when-cross-origin">
</head>
""", unsafe_allow_html=True)
all_agents = os.listdir("results")
all_results = {}
for agent in all_agents:
if not check_sanity(agent):
st.error(f"Results for {agent} are not in the correct format.")
continue
agent_results = []
for benchmark in BENCHMARKS:
with open(f"results/{agent}/{benchmark.lower()}.json") as f:
agent_results.extend(json.load(f))
all_results[agent] = agent_results
st.title("πŸ† BrowserGym Leaderboard")
st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.")
# content = create_yall()
# tab1, tab2, tab3, tab4 = st.tabs(["πŸ† WebAgent Leaderboard", "WorkArena++-L2 Leaderboard", "WorkArena++-L3 Leaderboard", "πŸ“ About"])
tabs = st.tabs(["πŸ† Main Leaderboard",] + BENCHMARKS + ["πŸ“ About"])
with tabs[0]:
# Leaderboard tab
def get_leaderboard_dict(results):
leaderboard_dict = []
for key, values in results.items():
result_dict = {"Agent": key}
for benchmark in BENCHMARKS:
if any(value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original" for value in values):
result_dict[benchmark] = [value["score"] for value in values if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original"][0]
else:
result_dict[benchmark] = "-"
leaderboard_dict.append(result_dict)
return leaderboard_dict
leaderboard_dict = get_leaderboard_dict(all_results)
# print (leaderboard_dict)
full_df = pd.DataFrame.from_dict(leaderboard_dict)
df = pd.DataFrame(columns=full_df.columns)
dfs_to_concat = []
dfs_to_concat.append(full_df)
# Concatenate the DataFrames
if dfs_to_concat:
df = pd.concat(dfs_to_concat, ignore_index=True)
# df['Average'] = sum(df[column] for column in BENCHMARKS)/len(BENCHMARKS)
# df['Average'] = df['Average'].round(2)
# Sort values
df = df.sort_values(by='WebArena', ascending=False)
# Add a search bar
search_query = st.text_input("Search agents", "", key="search_main")
# Filter the DataFrame based on the search query
if search_query:
df = df[df['Agent'].str.contains(search_query, case=False)]
# Display the filtered DataFrame or the entire leaderboard
def make_hyperlink(agent_name):
try:
safe_name = sanitize_agent_name(agent_name)
safe_url = f"https://huggingface.co/spaces/ServiceNow/browsergym-leaderboard/blob/main/results/{quote(safe_name)}/README.md"
return f'<a href="{html.escape(safe_url)}" target="_blank">{html.escape(safe_name)}</a>'
except ValueError:
return ""
df['Agent'] = df['Agent'].apply(make_hyperlink)
# st.dataframe(
# df[['Agent'] + BENCHMARKS],
# use_container_width=True,
# column_config={benchmark: {'alignment': 'center'} for benchmark in BENCHMARKS},
# hide_index=True,
# # height=int(len(df) * 36.2),
# )
# st.markdown(df.to_html(escape=False, index=False), unsafe_allow_html=True)
html_table = create_html_table_main(df)
st.markdown(html_table, unsafe_allow_html=True)
if st.button("Export to CSV", key="export_main"):
# Export the DataFrame to CSV
csv_data = df.to_csv(index=False)
# Create a link to download the CSV file
st.download_button(
label="Download CSV",
data=csv_data,
file_name="leaderboard.csv",
key="download-csv",
help="Click to download the CSV file",
)
with tabs[-1]:
st.markdown('''
### Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.
''')
for i, benchmark in enumerate(BENCHMARKS, start=1):
with tabs[i]:
def get_benchmark_dict(results, benchmark):
benchmark_dict = []
for key, values in results.items():
result_dict = {"Agent": key}
flag = 0
for value in values:
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original":
result_dict["Score"] = value["score"]
result_dict["Benchmark Specific"] = value["benchmark_specific"]
result_dict["Benchmark Tuned"] = value["benchmark_tuned"]
result_dict["Followed Evaluation Protocol"] = value["followed_evaluation_protocol"]
result_dict["Reproducible"] = value["reproducible"]
result_dict["Comments"] = value["comments"]
result_dict["Study ID"] = value["study_id"]
result_dict["Date"] = value["date_time"]
result_dict["Reproduced"] = []
result_dict["Reproduced_all"] = []
flag = 1
if not flag:
result_dict["Score"] = "-"
result_dict["Benchmark Specific"] = "-"
result_dict["Benchmark Tuned"] = "-"
result_dict["Followed Evaluation Protocol"] = "-"
result_dict["Reproducible"] = "-"
result_dict["Comments"] = "-"
result_dict["Study ID"] = "-"
result_dict["Date"] = "-"
result_dict["Reproduced"] = []
result_dict["Reproduced_all"] = []
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Reproduced":
result_dict["Reproduced"].append(value["score"])
result_dict["Reproduced_all"].append(", ".join([str(value["score"]), str(value["date_time"])]))
if result_dict["Reproduced"]:
result_dict["Reproduced"] = str(min(result_dict["Reproduced"])) + " - " + str(max(result_dict["Reproduced"]))
else:
result_dict["Reproduced"] = "-"
benchmark_dict.append(result_dict)
return benchmark_dict
benchmark_dict = get_benchmark_dict(all_results, benchmark=benchmark)
# print (leaderboard_dict)
full_df = pd.DataFrame.from_dict(benchmark_dict)
df_ = pd.DataFrame(columns=full_df.columns)
dfs_to_concat = []
dfs_to_concat.append(full_df)
# Concatenate the DataFrames
if dfs_to_concat:
df_ = pd.concat(dfs_to_concat, ignore_index=True)
# st.markdown(f"<h2 id='{benchmark.lower()}'>{benchmark}</h2>", unsafe_allow_html=True)
# st.dataframe(
# df_,
# use_container_width=True,
# column_config={benchmark: {'alignment': 'center'}},
# hide_index=True,
# )
html_table = create_html_table_benchmark(df_)
st.markdown(html_table, unsafe_allow_html=True)
if __name__ == "__main__":
main()