loose-control_sample / cross_frame_attention.py
SettW's picture
Create cross_frame_attention.py
967e6ad verified
# Adapted from https://github.com/Picsart-AI-Research/Text2Video-Zero
import torch
from einops import rearrange
class CrossFrameAttnProcessor:
def __init__(self, unet_chunk_size=2):
self.unet_chunk_size = unet_chunk_size
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None, **kwargs):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
is_cross_attention = encoder_hidden_states is not None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
# Sparse Attention
if not is_cross_attention:
video_length = key.size()[0] // self.unet_chunk_size
# print("Video length is", video_length)
# former_frame_index = torch.arange(video_length) - 1
# former_frame_index[0] = 0
former_frame_index = [0] * video_length
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
key = key[:, former_frame_index]
key = rearrange(key, "b f d c -> (b f) d c")
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
value = value[:, former_frame_index]
value = rearrange(value, "b f d c -> (b f) d c")
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class AttnProcessorX:
r"""
Default processor for performing attention-related computations.
"""
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
scale=1.0,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, scale=scale)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, scale=scale)
value = attn.to_v(encoder_hidden_states, scale=scale)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, scale=scale)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states