File size: 23,583 Bytes
b21d047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import gradio as gr
import os
import json
from dotenv import load_dotenv
from omoa import OllamaAgent, OllamaMixtureOfAgents, DEFAULT_PROMPTS, create_default_agents
from MemoryAssistant.memory import AgentCoreMemory, AgentEventMemory
from MemoryAssistant.prompts import wrap_user_message_in_xml_tags_json_mode
from llama_cpp_agent.chat_history.messages import Roles

# Load environment variables
load_dotenv()

# Ollama-specific environment variables
os.environ['OLLAMA_NUM_PARALLEL'] = os.getenv('OLLAMA_NUM_PARALLEL', '4')
os.environ['OLLAMA_MAX_LOADED_MODELS'] = os.getenv('OLLAMA_MAX_LOADED_MODELS', '4')

MODEL_AGGREGATE = os.getenv("MODEL_AGGREGATE")
MODEL_REFERENCE_1 = os.getenv("MODEL_REFERENCE_1")
MODEL_REFERENCE_2 = os.getenv("MODEL_REFERENCE_2")
MODEL_REFERENCE_3 = os.getenv("MODEL_REFERENCE_3")

# Modify these lines to include all available models
ALL_MODELS = [MODEL_AGGREGATE, MODEL_REFERENCE_1, MODEL_REFERENCE_2, MODEL_REFERENCE_3]
ALL_MODELS = [model for model in ALL_MODELS if model]  # Remove any None values

# Global variables to store the MoA configuration
moa_config = {
    "aggregate_agent": None,
    "reference_agents": [],
    "mixture": None
}

# Initialize memory components
agent_core_memory = AgentCoreMemory(["persona", "user", "scratchpad"], core_memory_file="MemoryAssistant/core_memory.json")
agent_event_memory = AgentEventMemory()

def create_mixture():
    moa_config["mixture"] = OllamaMixtureOfAgents(
        moa_config["reference_agents"],
        moa_config["aggregate_agent"]
    )

    # Set the memory components after initialization
    moa_config["mixture"].agent_core_memory = agent_core_memory
    moa_config["mixture"].agent_event_memory = agent_event_memory

def initialize_moa():
    global moa_config
    default_agents = create_default_agents()
    moa_config["aggregate_agent"] = default_agents["SynthesisAgent"]
    moa_config["reference_agents"] = [
        default_agents["AnalyticalAgent"],
        default_agents["HistoricalContextAgent"],
        default_agents["ScienceTruthAgent"]
    ]
    moa_config["mixture"] = OllamaMixtureOfAgents(
        moa_config["reference_agents"],
        moa_config["aggregate_agent"],
        temperature=0.6,
        max_tokens=2048,
        rounds=1
    )
    moa_config["mixture"].web_search_enabled = True  
    moa_config["mixture"].agent_core_memory = agent_core_memory
    moa_config["mixture"].agent_event_memory = agent_event_memory
    print("Mixture of Agents initialized successfully!")

# Call initialize_moa() at the start of the application
initialize_moa()

def create_agent(model, name, system_prompt, **params):
    supported_params = ['model', 'name', 'system_prompt']  # Add any other supported parameters here
    filtered_params = {k: v for k, v in params.items() if k in supported_params}
    return OllamaAgent(model, name, system_prompt, **filtered_params)

def clear_core_memory():
    if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
        return moa_config["mixture"].clear_core_memory()
    else:
        return "Error: MoA not initialized properly."

def clear_archival_memory():
    if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
        return moa_config["mixture"].clear_archival_memory()
    else:
        return "Error: MoA not initialized properly."

def edit_archival_memory(old_content, new_content):
    if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
        return moa_config["mixture"].edit_archival_memory(old_content, new_content)
    else:
        return "Error: MoA not initialized properly."

async def process_message(message, history):
    # Add user message to event memory
    agent_event_memory.add_event(Roles.user, wrap_user_message_in_xml_tags_json_mode(message))
    
    response, web_search_performed = await moa_config["mixture"].get_response(message)
    
    # Ensure the response is a list of tuples
    if isinstance(response, str):
        formatted_response = [(None, response)]
    elif isinstance(response, list):
        formatted_response = [(None, str(item)) for item in response]
    else:
        formatted_response = [(None, str(response))]
    
    info = f"Generated response using {len(moa_config['reference_agents'])} reference agents and 1 aggregate agent."
    if web_search_performed:
        info += " Web search was performed during response generation."
    
    return formatted_response, info

async def chat(message, history):
    response, processing_info = await process_message(message, history)
    
    # Ensure the response is a list of lists
    formatted_response = [[message, item[1]] if isinstance(item, tuple) else [message, str(item)] for item in response]
    
    # Append the new messages to the history
    updated_history = history + formatted_response
    
    # Ensure the final output is a list of lists
    final_output = [[msg, resp] for msg, resp in updated_history]
    
    return final_output, processing_info


def update_memory(self, message, role):
    # Update event memory
    self.agent_event_memory.add_event(role, message)

    # Update RAG
    self.rag.add_document(message)

def get_model_params(model_name):
    # Define custom parameters for each model
    params = {
        "llama2": ["temperature", "top_p", "top_k", "repeat_penalty", "num_ctx"],
        "mistral": ["temperature", "top_p", "top_k", "repeat_penalty", "num_ctx"],
        "codellama": ["temperature", "top_p", "top_k", "repeat_penalty", "num_ctx"],
    }
    return params.get(model_name, ["temperature", "top_p", "top_k", "repeat_penalty", "num_ctx"])  # Default parameters if model not found

def update_model_params(model_name):
    params = get_model_params(model_name)
    components = [gr.Markdown(f"### {model_name} Parameters")]
    for param in params:
        if param == "temperature":
            components.append(gr.Slider(minimum=0, maximum=2, value=0.7, step=0.1, label="Temperature"))
        elif param == "top_p":
            components.append(gr.Slider(minimum=0, maximum=1, value=0.9, step=0.05, label="Top P"))
        elif param == "top_k":
            components.append(gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top K"))
        elif param == "repeat_penalty":
            components.append(gr.Slider(minimum=0.1, maximum=2, value=1.1, step=0.05, label="Repeat Penalty"))
        elif param == "num_ctx":
            components.append(gr.Slider(minimum=128, maximum=4096, value=2048, step=128, label="Context Length"))
    
    return components

def update_agent_config(old_agent_name, model, new_name, prompt, **params):
    new_agent = create_agent(model, new_name, prompt, **params)
    
    if old_agent_name == "SynthesisAgent":
        moa_config["aggregate_agent"] = new_agent
    else:
        moa_config["reference_agents"] = [agent for agent in moa_config["reference_agents"] if agent.name != old_agent_name]
        moa_config["reference_agents"].append(new_agent)
    
    create_mixture()
    return f"Updated agent configuration: {old_agent_name} -> {new_name}"

def edit_core_memory(section, key, value):
    agent_core_memory.update_core_memory(section, {key: value})
    return f"Core memory updated: {section}.{key} = {value}"

def search_archival_memory(query):
    results = moa_config["mixture"].search_archival_memory(query)
    return f"Archival memory search results for '{query}':\n{results}"

def add_to_archival_memory(content):
    if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
        moa_config["mixture"].add_to_archival_memory(content)
        return f"Added to archival memory: {content}"
    return f"Failed to add to archival memory: {content}. MoA not initialized properly."

def toggle_web_search(enabled):
    if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
        return moa_config["mixture"].toggle_web_search(enabled)
    return "Error: MoA not initialized properly."




def create_gradio_interface():
    global moa_config
    theme = gr.themes.Base(
        primary_hue="green",
        secondary_hue="orange",  # Changed from "brown" to "orange"
        neutral_hue="gray",
        font=("Helvetica", "sans-serif"),
    ).set(
        body_background_fill="linear-gradient(to right, #1a2f0f, #3d2b1f)",
        body_background_fill_dark="linear-gradient(to right, #0f1a09, #261a13)",
        button_primary_background_fill="#3d2b1f",
        button_primary_background_fill_hover="#4e3827",
        block_title_text_color="#d3c6aa",
        block_label_text_color="#b8a888",
        input_background_fill="#f0e6d2",
        input_background_fill_dark="#2a1f14",
        input_border_color="#7d6d58",
        input_border_color_dark="#5c4c3d",
        checkbox_background_color="#3d2b1f",
        checkbox_background_color_selected="#5e4534",
        slider_color="#7d6d58",
        slider_color_dark="#5c4c3d",
    )

    css = """
    .gradio-container {
        background-image: url('file/assets/mycelium_bg.png');
        background-size: cover;
        background-attachment: fixed;
    }
    .gr-box {
        border-radius: 15px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        background-color: rgba(255, 255, 255, 0.1);
        backdrop-filter: blur(5px);
    }
    .gr-button {
        border-radius: 25px;
    }
    .gr-input {
        border-radius: 10px;
    }
    .gr-form {
        border-radius: 15px;
        background-color: rgba(255, 255, 255, 0.05);
    }
    """

    with gr.Blocks(theme=theme, css=css) as demo:
        gr.Markdown(
            """
            # Mycomind Daemon: Advanced Mixture-of-Memory-RAG-Agents (MoMRA) Cognitive Assistant
            
            Harness the power of interconnected AI models inspired by mycelial networks.
            """
        )
        
        with gr.Tab("Configure MoA"):
            agent_tabs = ["Agent1", "Agent2", "Agent3", "Synthesis Agent"]
            all_agents = moa_config["reference_agents"] + [moa_config["aggregate_agent"]]
            for i, agent in enumerate(all_agents):
                with gr.Tab(agent_tabs[i]):
                    with gr.Row():
                        with gr.Column(scale=1):
                            model = gr.Dropdown(
                                choices=ALL_MODELS,
                                value=agent.model,
                                label="Model"
                            )
                            name = gr.Textbox(
                                value=agent.name,
                                label="Agent Name",
                                interactive=True
                            )
                        
                        with gr.Column(scale=2):
                            prompt = gr.Textbox(
                                value=agent.system_prompt,
                                label="System Prompt",
                                lines=10,
                                interactive=True
                            )
                    
                    with gr.Group() as params_group:
                        gr.Markdown(f"### {agent.model} Parameters")
                        temperature = gr.Slider(minimum=0, maximum=2, value=0.7, step=0.1, label="Temperature")
                        top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.05, label="Top P")
                        top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top K")
                        repeat_penalty = gr.Slider(minimum=0.1, maximum=2, value=1.1, step=0.05, label="Repeat Penalty")
                        num_ctx = gr.Slider(minimum=128, maximum=4096, value=2048, step=128, label="Context Length")
                    
                    model.change(
                        update_model_params,
                        inputs=[model],
                        outputs=[params_group]
                    )
                    
                    update_btn = gr.Button(f"Update {agent_tabs[i]}")
                    update_status = gr.Textbox(label="Update Status", interactive=False)
                    
                    def update_agent_wrapper(agent_index):
                        params = {
                            "temperature": temperature.value,
                            "top_p": top_p.value,
                            "top_k": top_k.value,
                            "repeat_penalty": repeat_penalty.value,
                            "num_ctx": num_ctx.value
                        }
                        return update_agent_config(all_agents[agent_index].name, model.value, name.value, prompt.value, **params)
                    
                    update_btn.click(
                        lambda: update_agent_wrapper(i),
                        outputs=[update_status]
                    )
        
        with gr.Tab("Chat"):
            chatbot = gr.Chatbot(label="Chat History", height=400)
            with gr.Row():
                msg = gr.Textbox(label="Your Message", placeholder="Type your message here...", lines=2, scale=4)
                send_btn = gr.Button("Send", variant="primary", scale=1)
            clear_btn = gr.Button("Clear Chat")
            processing_log = gr.Textbox(label="Processing Log", interactive=False)
        
        with gr.Tab("Memory Management"):
            with gr.Row():
                with gr.Column():
                    archival_query = gr.Textbox(label="Archival Memory Search Query")
                    search_archival_btn = gr.Button("Search Archival Memory")
                    archival_results = gr.Textbox(label="Archival Memory Results", interactive=False)

                with gr.Column():
                    gr.Markdown("### Archival Memory Management")
                    clear_archival_btn = gr.Button("Clear Archival Memory")
                    clear_archival_status = gr.Textbox(label="Clear Archival Memory Status", interactive=False)
                    
                    gr.Markdown("### Edit Archival Memory")
                    old_content = gr.Textbox(label="Old Content")
                    new_content = gr.Textbox(label="New Content")
                    edit_archival_btn = gr.Button("Edit Archival Memory")
                    edit_archival_status = gr.Textbox(label="Edit Archival Memory Status", interactive=False)

                with gr.Column():
                    archival_content = gr.Textbox(label="Content to Add to Archival Memory")
                    add_archival_btn = gr.Button("Add to Archival Memory")
                    archival_status = gr.Textbox(label="Archival Memory Status", interactive=False)

                # with gr.Row():
                #     gr.Markdown("### Core Memory Viewer")
                #     core_memory_viewer = gr.JSON(label="Current Core Memory", value=moa_config["mixture"].load_core_memory())
                #     refresh_core_memory_btn = gr.Button("Refresh Core Memory View")

                # with gr.Row():
                #     gr.Markdown("### Core Memory Editor")
                #     core_memory_editor = gr.Textbox(label="Edit Core Memory", value=json.dumps(moa_config["mixture"].load_core_memory(), indent=2), lines=10, max_lines=20)
                #     update_core_memory_btn = gr.Button("Update Core Memory")
                #     core_memory_status = gr.Textbox(label="Core Memory Update Status", interactive=False)
                

                
        with gr.Tab("RAG Management"):
            with gr.Row():
                with gr.Column():        
                    upload_file = gr.File(label="Upload Document")
                    upload_btn = gr.Button("Process Document")
                    upload_status = gr.Textbox(label="Upload Status", interactive=False)
                
                with gr.Column():
                    gr.Markdown("### RAG Configuration")
                    chunk_size = gr.Slider(minimum=128, maximum=1024, value=512, step=64, label="Chunk Size")
                    chunk_overlap = gr.Slider(minimum=0, maximum=256, value=0, step=32, label="Chunk Overlap")
                    k_value = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Retrieved Documents (k)")
            
            with gr.Row():
                gr.Markdown("### RAG Status")
                rag_status = gr.JSON(label="Current RAG Status")
                refresh_rag_status_btn = gr.Button("Refresh RAG Status")

            def update_rag_config(chunk_size, chunk_overlap, k_value):
                rag = moa_config["mixture"].rag
                
                # Update attributes if they exist
                if hasattr(rag, 'chunk_size'):
                    rag.chunk_size = chunk_size
                if hasattr(rag, 'chunk_overlap'):
                    rag.chunk_overlap = chunk_overlap
                if hasattr(rag, 'k'):
                    rag.k = k_value
                
                # If there's a specific method to update configuration, use it
                if hasattr(rag, 'update_config'):
                    rag.update_config(chunk_size=chunk_size, chunk_overlap=chunk_overlap, k=k_value)
                
                # If there's a method to reinitialize the index with new settings, call it
                if hasattr(rag, 'reinitialize_index'):
                    rag.reinitialize_index()
                
                return "RAG configuration updated successfully"

            def get_rag_status():
                rag = moa_config["mixture"].rag
                status = {
                    "Index Size": rag.get_index_size() if hasattr(rag, 'get_index_size') else "Not available",
                    "Current Configuration": rag.get_config() if hasattr(rag, 'get_config') else "Not available"
                }
                
                # Try to get document count if the method exists
                if hasattr(rag, 'get_document_count'):
                    status["Document Count"] = rag.get_document_count()
                elif hasattr(rag, 'index') and hasattr(rag.index, '__len__'):
                    status["Document Count"] = len(rag.index)
                else:
                    status["Document Count"] = "Not available"
                
                return status

            update_rag_config_btn = gr.Button("Update RAG Configuration")
            update_rag_config_status = gr.Textbox(label="Update Status", interactive=False)

            update_rag_config_btn.click(
                update_rag_config,
                inputs=[chunk_size, chunk_overlap, k_value],
                outputs=[update_rag_config_status]
            )

            refresh_rag_status_btn.click(
                get_rag_status,
                outputs=[rag_status]
            )

        with gr.Tab("Settings"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Web Search")
                    web_search_toggle = gr.Checkbox(label="Enable Web Search", value=True)
                    web_search_status = gr.Textbox(label="Web Search Status", interactive=False)

                with gr.Column():
                    gr.Markdown("### Processing Parameters")
                    rounds_slider = gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Processing Rounds")
                    temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
                    max_tokens_slider = gr.Slider(minimum=100, maximum=4096, value=1000, step=100, label="Max Tokens")

            with gr.Row():
                gr.Markdown("### Additional Settings")
                stream_output_toggle = gr.Checkbox(label="Stream Output", value=True)
                debug_mode_toggle = gr.Checkbox(label="Debug Mode", value=False)

            #def refresh_core_memory():
            #    return moa_config["mixture"].load_core_memory()

            #def update_core_memory(new_core_memory_str):
            #    try:
            #        new_core_memory = json.loads(new_core_memory_str)
            #        moa_config["mixture"].core_memory = new_core_memory
            #        moa_config["mixture"].agent_core_memory.update_core_memory(new_core_memory)
            #        moa_config["mixture"].agent_core_memory.save_core_memory(moa_config["mixture"].core_memory_file)
            #        return json.dumps(new_core_memory, indent=2), "Core memory updated successfully"
            #    except json.JSONDecodeError:
            #        return json.dumps(moa_config["mixture"].load_core_memory(), indent=2), "Error: Invalid JSON format"
            #    except Exception as e:
            #        return json.dumps(moa_config["mixture"].load_core_memory(), indent=2), f"Error updating core memory: {str(e)}"

            def update_settings(rounds, temperature, max_tokens, stream_output, debug_mode):
                moa_config["mixture"].rounds = rounds
                moa_config["mixture"].temperature = temperature
                moa_config["mixture"].max_tokens = max_tokens
                moa_config["mixture"].stream_output = stream_output
                moa_config["mixture"].debug_mode = debug_mode
                return "Settings updated successfully"

            # update_core_memory_btn.click(
            #     update_core_memory,
            #     inputs=[core_memory_editor],
            #     outputs=[core_memory_status]
            # )

            # refresh_core_memory_btn.click(
            #     refresh_core_memory,
            #     outputs=[core_memory_viewer]
            # )

            # update_core_memory_btn.click(
            #     update_core_memory,
            #     inputs=[core_memory_editor],
            #     outputs=[core_memory_viewer, core_memory_status]
            # )

            settings_update_btn = gr.Button("Update Settings")
            settings_update_status = gr.Textbox(label="Settings Update Status", interactive=False)

            settings_update_btn.click(
                update_settings,
                inputs=[rounds_slider, temperature_slider, max_tokens_slider, stream_output_toggle, debug_mode_toggle],
                outputs=[settings_update_status]
            )

            web_search_toggle.change(
                toggle_web_search,
                inputs=[web_search_toggle],
                outputs=[web_search_status]
            )

        msg.submit(chat, inputs=[msg, chatbot], outputs=[chatbot, processing_log])
        send_btn.click(chat, inputs=[msg, chatbot], outputs=[chatbot, processing_log])
        clear_btn.click(lambda: ([], ""), outputs=[chatbot, processing_log])
        
        search_archival_btn.click(
            search_archival_memory,
            inputs=[archival_query],
            outputs=[archival_results]
        )
        
        add_archival_btn.click(
            add_to_archival_memory,
            inputs=[archival_content],
            outputs=[archival_status]
        )

        upload_btn.click(
            lambda file: moa_config["mixture"].upload_document(file.name) if file else "No file selected",
            inputs=[upload_file],
            outputs=[upload_status]
        )

        clear_archival_btn.click(
            clear_archival_memory,
            outputs=[clear_archival_status]
        )

        edit_archival_btn.click(
            edit_archival_memory,
            inputs=[old_content, new_content],
            outputs=[edit_archival_status]
        )

    return demo

if __name__ == "__main__":
    initialize_moa()
    demo = create_gradio_interface()
    demo.queue()
    demo.launch(share=True)