File size: 23,583 Bytes
b21d047 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import gradio as gr
import os
import json
from dotenv import load_dotenv
from omoa import OllamaAgent, OllamaMixtureOfAgents, DEFAULT_PROMPTS, create_default_agents
from MemoryAssistant.memory import AgentCoreMemory, AgentEventMemory
from MemoryAssistant.prompts import wrap_user_message_in_xml_tags_json_mode
from llama_cpp_agent.chat_history.messages import Roles
# Load environment variables
load_dotenv()
# Ollama-specific environment variables
os.environ['OLLAMA_NUM_PARALLEL'] = os.getenv('OLLAMA_NUM_PARALLEL', '4')
os.environ['OLLAMA_MAX_LOADED_MODELS'] = os.getenv('OLLAMA_MAX_LOADED_MODELS', '4')
MODEL_AGGREGATE = os.getenv("MODEL_AGGREGATE")
MODEL_REFERENCE_1 = os.getenv("MODEL_REFERENCE_1")
MODEL_REFERENCE_2 = os.getenv("MODEL_REFERENCE_2")
MODEL_REFERENCE_3 = os.getenv("MODEL_REFERENCE_3")
# Modify these lines to include all available models
ALL_MODELS = [MODEL_AGGREGATE, MODEL_REFERENCE_1, MODEL_REFERENCE_2, MODEL_REFERENCE_3]
ALL_MODELS = [model for model in ALL_MODELS if model] # Remove any None values
# Global variables to store the MoA configuration
moa_config = {
"aggregate_agent": None,
"reference_agents": [],
"mixture": None
}
# Initialize memory components
agent_core_memory = AgentCoreMemory(["persona", "user", "scratchpad"], core_memory_file="MemoryAssistant/core_memory.json")
agent_event_memory = AgentEventMemory()
def create_mixture():
moa_config["mixture"] = OllamaMixtureOfAgents(
moa_config["reference_agents"],
moa_config["aggregate_agent"]
)
# Set the memory components after initialization
moa_config["mixture"].agent_core_memory = agent_core_memory
moa_config["mixture"].agent_event_memory = agent_event_memory
def initialize_moa():
global moa_config
default_agents = create_default_agents()
moa_config["aggregate_agent"] = default_agents["SynthesisAgent"]
moa_config["reference_agents"] = [
default_agents["AnalyticalAgent"],
default_agents["HistoricalContextAgent"],
default_agents["ScienceTruthAgent"]
]
moa_config["mixture"] = OllamaMixtureOfAgents(
moa_config["reference_agents"],
moa_config["aggregate_agent"],
temperature=0.6,
max_tokens=2048,
rounds=1
)
moa_config["mixture"].web_search_enabled = True
moa_config["mixture"].agent_core_memory = agent_core_memory
moa_config["mixture"].agent_event_memory = agent_event_memory
print("Mixture of Agents initialized successfully!")
# Call initialize_moa() at the start of the application
initialize_moa()
def create_agent(model, name, system_prompt, **params):
supported_params = ['model', 'name', 'system_prompt'] # Add any other supported parameters here
filtered_params = {k: v for k, v in params.items() if k in supported_params}
return OllamaAgent(model, name, system_prompt, **filtered_params)
def clear_core_memory():
if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
return moa_config["mixture"].clear_core_memory()
else:
return "Error: MoA not initialized properly."
def clear_archival_memory():
if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
return moa_config["mixture"].clear_archival_memory()
else:
return "Error: MoA not initialized properly."
def edit_archival_memory(old_content, new_content):
if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
return moa_config["mixture"].edit_archival_memory(old_content, new_content)
else:
return "Error: MoA not initialized properly."
async def process_message(message, history):
# Add user message to event memory
agent_event_memory.add_event(Roles.user, wrap_user_message_in_xml_tags_json_mode(message))
response, web_search_performed = await moa_config["mixture"].get_response(message)
# Ensure the response is a list of tuples
if isinstance(response, str):
formatted_response = [(None, response)]
elif isinstance(response, list):
formatted_response = [(None, str(item)) for item in response]
else:
formatted_response = [(None, str(response))]
info = f"Generated response using {len(moa_config['reference_agents'])} reference agents and 1 aggregate agent."
if web_search_performed:
info += " Web search was performed during response generation."
return formatted_response, info
async def chat(message, history):
response, processing_info = await process_message(message, history)
# Ensure the response is a list of lists
formatted_response = [[message, item[1]] if isinstance(item, tuple) else [message, str(item)] for item in response]
# Append the new messages to the history
updated_history = history + formatted_response
# Ensure the final output is a list of lists
final_output = [[msg, resp] for msg, resp in updated_history]
return final_output, processing_info
def update_memory(self, message, role):
# Update event memory
self.agent_event_memory.add_event(role, message)
# Update RAG
self.rag.add_document(message)
def get_model_params(model_name):
# Define custom parameters for each model
params = {
"llama2": ["temperature", "top_p", "top_k", "repeat_penalty", "num_ctx"],
"mistral": ["temperature", "top_p", "top_k", "repeat_penalty", "num_ctx"],
"codellama": ["temperature", "top_p", "top_k", "repeat_penalty", "num_ctx"],
}
return params.get(model_name, ["temperature", "top_p", "top_k", "repeat_penalty", "num_ctx"]) # Default parameters if model not found
def update_model_params(model_name):
params = get_model_params(model_name)
components = [gr.Markdown(f"### {model_name} Parameters")]
for param in params:
if param == "temperature":
components.append(gr.Slider(minimum=0, maximum=2, value=0.7, step=0.1, label="Temperature"))
elif param == "top_p":
components.append(gr.Slider(minimum=0, maximum=1, value=0.9, step=0.05, label="Top P"))
elif param == "top_k":
components.append(gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top K"))
elif param == "repeat_penalty":
components.append(gr.Slider(minimum=0.1, maximum=2, value=1.1, step=0.05, label="Repeat Penalty"))
elif param == "num_ctx":
components.append(gr.Slider(minimum=128, maximum=4096, value=2048, step=128, label="Context Length"))
return components
def update_agent_config(old_agent_name, model, new_name, prompt, **params):
new_agent = create_agent(model, new_name, prompt, **params)
if old_agent_name == "SynthesisAgent":
moa_config["aggregate_agent"] = new_agent
else:
moa_config["reference_agents"] = [agent for agent in moa_config["reference_agents"] if agent.name != old_agent_name]
moa_config["reference_agents"].append(new_agent)
create_mixture()
return f"Updated agent configuration: {old_agent_name} -> {new_name}"
def edit_core_memory(section, key, value):
agent_core_memory.update_core_memory(section, {key: value})
return f"Core memory updated: {section}.{key} = {value}"
def search_archival_memory(query):
results = moa_config["mixture"].search_archival_memory(query)
return f"Archival memory search results for '{query}':\n{results}"
def add_to_archival_memory(content):
if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
moa_config["mixture"].add_to_archival_memory(content)
return f"Added to archival memory: {content}"
return f"Failed to add to archival memory: {content}. MoA not initialized properly."
def toggle_web_search(enabled):
if isinstance(moa_config["mixture"], OllamaMixtureOfAgents):
return moa_config["mixture"].toggle_web_search(enabled)
return "Error: MoA not initialized properly."
def create_gradio_interface():
global moa_config
theme = gr.themes.Base(
primary_hue="green",
secondary_hue="orange", # Changed from "brown" to "orange"
neutral_hue="gray",
font=("Helvetica", "sans-serif"),
).set(
body_background_fill="linear-gradient(to right, #1a2f0f, #3d2b1f)",
body_background_fill_dark="linear-gradient(to right, #0f1a09, #261a13)",
button_primary_background_fill="#3d2b1f",
button_primary_background_fill_hover="#4e3827",
block_title_text_color="#d3c6aa",
block_label_text_color="#b8a888",
input_background_fill="#f0e6d2",
input_background_fill_dark="#2a1f14",
input_border_color="#7d6d58",
input_border_color_dark="#5c4c3d",
checkbox_background_color="#3d2b1f",
checkbox_background_color_selected="#5e4534",
slider_color="#7d6d58",
slider_color_dark="#5c4c3d",
)
css = """
.gradio-container {
background-image: url('file/assets/mycelium_bg.png');
background-size: cover;
background-attachment: fixed;
}
.gr-box {
border-radius: 15px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
background-color: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(5px);
}
.gr-button {
border-radius: 25px;
}
.gr-input {
border-radius: 10px;
}
.gr-form {
border-radius: 15px;
background-color: rgba(255, 255, 255, 0.05);
}
"""
with gr.Blocks(theme=theme, css=css) as demo:
gr.Markdown(
"""
# Mycomind Daemon: Advanced Mixture-of-Memory-RAG-Agents (MoMRA) Cognitive Assistant
Harness the power of interconnected AI models inspired by mycelial networks.
"""
)
with gr.Tab("Configure MoA"):
agent_tabs = ["Agent1", "Agent2", "Agent3", "Synthesis Agent"]
all_agents = moa_config["reference_agents"] + [moa_config["aggregate_agent"]]
for i, agent in enumerate(all_agents):
with gr.Tab(agent_tabs[i]):
with gr.Row():
with gr.Column(scale=1):
model = gr.Dropdown(
choices=ALL_MODELS,
value=agent.model,
label="Model"
)
name = gr.Textbox(
value=agent.name,
label="Agent Name",
interactive=True
)
with gr.Column(scale=2):
prompt = gr.Textbox(
value=agent.system_prompt,
label="System Prompt",
lines=10,
interactive=True
)
with gr.Group() as params_group:
gr.Markdown(f"### {agent.model} Parameters")
temperature = gr.Slider(minimum=0, maximum=2, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.05, label="Top P")
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top K")
repeat_penalty = gr.Slider(minimum=0.1, maximum=2, value=1.1, step=0.05, label="Repeat Penalty")
num_ctx = gr.Slider(minimum=128, maximum=4096, value=2048, step=128, label="Context Length")
model.change(
update_model_params,
inputs=[model],
outputs=[params_group]
)
update_btn = gr.Button(f"Update {agent_tabs[i]}")
update_status = gr.Textbox(label="Update Status", interactive=False)
def update_agent_wrapper(agent_index):
params = {
"temperature": temperature.value,
"top_p": top_p.value,
"top_k": top_k.value,
"repeat_penalty": repeat_penalty.value,
"num_ctx": num_ctx.value
}
return update_agent_config(all_agents[agent_index].name, model.value, name.value, prompt.value, **params)
update_btn.click(
lambda: update_agent_wrapper(i),
outputs=[update_status]
)
with gr.Tab("Chat"):
chatbot = gr.Chatbot(label="Chat History", height=400)
with gr.Row():
msg = gr.Textbox(label="Your Message", placeholder="Type your message here...", lines=2, scale=4)
send_btn = gr.Button("Send", variant="primary", scale=1)
clear_btn = gr.Button("Clear Chat")
processing_log = gr.Textbox(label="Processing Log", interactive=False)
with gr.Tab("Memory Management"):
with gr.Row():
with gr.Column():
archival_query = gr.Textbox(label="Archival Memory Search Query")
search_archival_btn = gr.Button("Search Archival Memory")
archival_results = gr.Textbox(label="Archival Memory Results", interactive=False)
with gr.Column():
gr.Markdown("### Archival Memory Management")
clear_archival_btn = gr.Button("Clear Archival Memory")
clear_archival_status = gr.Textbox(label="Clear Archival Memory Status", interactive=False)
gr.Markdown("### Edit Archival Memory")
old_content = gr.Textbox(label="Old Content")
new_content = gr.Textbox(label="New Content")
edit_archival_btn = gr.Button("Edit Archival Memory")
edit_archival_status = gr.Textbox(label="Edit Archival Memory Status", interactive=False)
with gr.Column():
archival_content = gr.Textbox(label="Content to Add to Archival Memory")
add_archival_btn = gr.Button("Add to Archival Memory")
archival_status = gr.Textbox(label="Archival Memory Status", interactive=False)
# with gr.Row():
# gr.Markdown("### Core Memory Viewer")
# core_memory_viewer = gr.JSON(label="Current Core Memory", value=moa_config["mixture"].load_core_memory())
# refresh_core_memory_btn = gr.Button("Refresh Core Memory View")
# with gr.Row():
# gr.Markdown("### Core Memory Editor")
# core_memory_editor = gr.Textbox(label="Edit Core Memory", value=json.dumps(moa_config["mixture"].load_core_memory(), indent=2), lines=10, max_lines=20)
# update_core_memory_btn = gr.Button("Update Core Memory")
# core_memory_status = gr.Textbox(label="Core Memory Update Status", interactive=False)
with gr.Tab("RAG Management"):
with gr.Row():
with gr.Column():
upload_file = gr.File(label="Upload Document")
upload_btn = gr.Button("Process Document")
upload_status = gr.Textbox(label="Upload Status", interactive=False)
with gr.Column():
gr.Markdown("### RAG Configuration")
chunk_size = gr.Slider(minimum=128, maximum=1024, value=512, step=64, label="Chunk Size")
chunk_overlap = gr.Slider(minimum=0, maximum=256, value=0, step=32, label="Chunk Overlap")
k_value = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Retrieved Documents (k)")
with gr.Row():
gr.Markdown("### RAG Status")
rag_status = gr.JSON(label="Current RAG Status")
refresh_rag_status_btn = gr.Button("Refresh RAG Status")
def update_rag_config(chunk_size, chunk_overlap, k_value):
rag = moa_config["mixture"].rag
# Update attributes if they exist
if hasattr(rag, 'chunk_size'):
rag.chunk_size = chunk_size
if hasattr(rag, 'chunk_overlap'):
rag.chunk_overlap = chunk_overlap
if hasattr(rag, 'k'):
rag.k = k_value
# If there's a specific method to update configuration, use it
if hasattr(rag, 'update_config'):
rag.update_config(chunk_size=chunk_size, chunk_overlap=chunk_overlap, k=k_value)
# If there's a method to reinitialize the index with new settings, call it
if hasattr(rag, 'reinitialize_index'):
rag.reinitialize_index()
return "RAG configuration updated successfully"
def get_rag_status():
rag = moa_config["mixture"].rag
status = {
"Index Size": rag.get_index_size() if hasattr(rag, 'get_index_size') else "Not available",
"Current Configuration": rag.get_config() if hasattr(rag, 'get_config') else "Not available"
}
# Try to get document count if the method exists
if hasattr(rag, 'get_document_count'):
status["Document Count"] = rag.get_document_count()
elif hasattr(rag, 'index') and hasattr(rag.index, '__len__'):
status["Document Count"] = len(rag.index)
else:
status["Document Count"] = "Not available"
return status
update_rag_config_btn = gr.Button("Update RAG Configuration")
update_rag_config_status = gr.Textbox(label="Update Status", interactive=False)
update_rag_config_btn.click(
update_rag_config,
inputs=[chunk_size, chunk_overlap, k_value],
outputs=[update_rag_config_status]
)
refresh_rag_status_btn.click(
get_rag_status,
outputs=[rag_status]
)
with gr.Tab("Settings"):
with gr.Row():
with gr.Column():
gr.Markdown("### Web Search")
web_search_toggle = gr.Checkbox(label="Enable Web Search", value=True)
web_search_status = gr.Textbox(label="Web Search Status", interactive=False)
with gr.Column():
gr.Markdown("### Processing Parameters")
rounds_slider = gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Processing Rounds")
temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
max_tokens_slider = gr.Slider(minimum=100, maximum=4096, value=1000, step=100, label="Max Tokens")
with gr.Row():
gr.Markdown("### Additional Settings")
stream_output_toggle = gr.Checkbox(label="Stream Output", value=True)
debug_mode_toggle = gr.Checkbox(label="Debug Mode", value=False)
#def refresh_core_memory():
# return moa_config["mixture"].load_core_memory()
#def update_core_memory(new_core_memory_str):
# try:
# new_core_memory = json.loads(new_core_memory_str)
# moa_config["mixture"].core_memory = new_core_memory
# moa_config["mixture"].agent_core_memory.update_core_memory(new_core_memory)
# moa_config["mixture"].agent_core_memory.save_core_memory(moa_config["mixture"].core_memory_file)
# return json.dumps(new_core_memory, indent=2), "Core memory updated successfully"
# except json.JSONDecodeError:
# return json.dumps(moa_config["mixture"].load_core_memory(), indent=2), "Error: Invalid JSON format"
# except Exception as e:
# return json.dumps(moa_config["mixture"].load_core_memory(), indent=2), f"Error updating core memory: {str(e)}"
def update_settings(rounds, temperature, max_tokens, stream_output, debug_mode):
moa_config["mixture"].rounds = rounds
moa_config["mixture"].temperature = temperature
moa_config["mixture"].max_tokens = max_tokens
moa_config["mixture"].stream_output = stream_output
moa_config["mixture"].debug_mode = debug_mode
return "Settings updated successfully"
# update_core_memory_btn.click(
# update_core_memory,
# inputs=[core_memory_editor],
# outputs=[core_memory_status]
# )
# refresh_core_memory_btn.click(
# refresh_core_memory,
# outputs=[core_memory_viewer]
# )
# update_core_memory_btn.click(
# update_core_memory,
# inputs=[core_memory_editor],
# outputs=[core_memory_viewer, core_memory_status]
# )
settings_update_btn = gr.Button("Update Settings")
settings_update_status = gr.Textbox(label="Settings Update Status", interactive=False)
settings_update_btn.click(
update_settings,
inputs=[rounds_slider, temperature_slider, max_tokens_slider, stream_output_toggle, debug_mode_toggle],
outputs=[settings_update_status]
)
web_search_toggle.change(
toggle_web_search,
inputs=[web_search_toggle],
outputs=[web_search_status]
)
msg.submit(chat, inputs=[msg, chatbot], outputs=[chatbot, processing_log])
send_btn.click(chat, inputs=[msg, chatbot], outputs=[chatbot, processing_log])
clear_btn.click(lambda: ([], ""), outputs=[chatbot, processing_log])
search_archival_btn.click(
search_archival_memory,
inputs=[archival_query],
outputs=[archival_results]
)
add_archival_btn.click(
add_to_archival_memory,
inputs=[archival_content],
outputs=[archival_status]
)
upload_btn.click(
lambda file: moa_config["mixture"].upload_document(file.name) if file else "No file selected",
inputs=[upload_file],
outputs=[upload_status]
)
clear_archival_btn.click(
clear_archival_memory,
outputs=[clear_archival_status]
)
edit_archival_btn.click(
edit_archival_memory,
inputs=[old_content, new_content],
outputs=[edit_archival_status]
)
return demo
if __name__ == "__main__":
initialize_moa()
demo = create_gradio_interface()
demo.queue()
demo.launch(share=True) |