Spaces:
Running
Running
File size: 4,013 Bytes
6b3405c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import { Connect, PreviewServer, ViteDevServer } from "vite";
import OpenAI from "openai";
import { Stream } from "openai/streaming.mjs";
import { RateLimiterMemory } from "rate-limiter-flexible";
import { argon2Verify } from "hash-wasm";
import { getSearchToken } from "./searchToken";
import { isVerifiedToken, addVerifiedToken } from "./verifiedTokens";
const rateLimiter = new RateLimiterMemory({
points: 2,
duration: 10,
});
export function internalApiEndpointServerHook<
T extends ViteDevServer | PreviewServer,
>(server: T) {
server.middlewares.use(async (request, response, next) => {
if (!request.url.startsWith("/inference")) return next();
const authHeader = request.headers.authorization;
const tokenPrefix = "Bearer ";
const token =
authHeader && authHeader.startsWith(tokenPrefix)
? authHeader.slice(tokenPrefix.length)
: null;
if (!token) {
response.statusCode = 401;
response.end("Missing or invalid Authorization header.");
return;
}
if (!isVerifiedToken(token)) {
let isValidToken = false;
try {
isValidToken = await argon2Verify({
password: getSearchToken(),
hash: token,
});
} catch (error) {
void error;
}
if (isValidToken) {
addVerifiedToken(token);
} else {
response.statusCode = 401;
response.end("Unauthorized.");
return;
}
}
try {
await rateLimiter.consume(token);
} catch {
response.statusCode = 429;
response.end("Too many requests.");
return;
}
const openai = new OpenAI({
baseURL: process.env.INTERNAL_OPENAI_COMPATIBLE_API_BASE_URL,
apiKey: process.env.INTERNAL_OPENAI_COMPATIBLE_API_KEY,
});
try {
const requestBody = await getRequestBody(request);
const completion = await openai.chat.completions.create({
...requestBody,
model: process.env.INTERNAL_OPENAI_COMPATIBLE_API_MODEL,
stream: true,
});
response.setHeader("Content-Type", "text/event-stream");
response.setHeader("Cache-Control", "no-cache");
response.setHeader("Connection", "keep-alive");
const stream = OpenAIStream(completion);
stream.pipeTo(
new WritableStream({
write(chunk) {
response.write(chunk);
},
close() {
response.end();
},
}),
);
} catch (error) {
console.error("Error in internal API endpoint:", error);
response.statusCode = 500;
response.end(JSON.stringify({ error: "Internal server error" }));
}
});
}
async function getRequestBody(
request: Connect.IncomingMessage,
): Promise<OpenAI.Chat.Completions.ChatCompletionCreateParamsNonStreaming> {
return new Promise((resolve, reject) => {
let body = "";
request.on("data", (chunk: string) => {
body += chunk;
});
request.on("end", () => {
try {
resolve(JSON.parse(body));
} catch (error) {
reject(error);
}
});
});
}
function OpenAIStream(
completion: Stream<OpenAI.Chat.Completions.ChatCompletionChunk>,
) {
return new ReadableStream({
async start(controller) {
for await (const chunk of completion) {
const content = chunk.choices[0]?.delta?.content || "";
if (content) {
const payload = {
id: chunk.id,
object: "chat.completion.chunk",
created: chunk.created,
model: chunk.model,
choices: [
{
index: 0,
delta: { content },
finish_reason: chunk.choices[0].finish_reason,
},
],
};
controller.enqueue(
new TextEncoder().encode(`data: ${JSON.stringify(payload)}\n\n`),
);
}
}
controller.enqueue(new TextEncoder().encode("data: [DONE]\n\n"));
controller.close();
},
});
}
|