Spaces:
Running
Running
File size: 9,110 Bytes
337fbee 993eabd 337fbee b4a37d1 337fbee 993eabd 337fbee b4a37d1 337fbee 993eabd 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 993eabd b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee b4a37d1 337fbee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
"use strict";
function main() {
// Get a WebGL2 context
/** @type {HTMLCanvasElement} */
const canvas = document.querySelector("#canvas");
const gl = canvas.getContext("webgl2");
if (!gl) {
return;
}
//ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
// Vertex Shader
// Simply passes along vertex positions.
const vs = `#version 300 es
in vec4 a_position;
void main() {
gl_Position = a_position;
}
`;
//ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
// Fragment Shader
// This shader rayβmarches a sphere whose radius is perturbed by multiple
// cymatic (sineβbased) modes. Its surface is lit with diffuse and specular
// shading and decorated with intricate stripe textures and a wild color palette.
const fs = `#version 300 es
precision highp float;
uniform vec2 iResolution;
uniform vec2 iMouse;
uniform float iTime;
out vec4 outColor;
// A wild palette function that returns vivid colors.
vec3 wildPalette(float t) {
vec3 a = vec3(0.5, 0.5, 0.5);
vec3 b = vec3(0.5, 0.5, 0.5);
vec3 c = vec3(1.0, 1.0, 1.0);
vec3 d = vec3(0.0, 0.33, 0.67);
return a + b * cos(6.28318 * (c * t + d));
}
// The sphereβs surface is modulated by several sineβbased modes.
// We compute a βdisplacementβ that is added to the base radius.
float sphereDisplacement(vec3 p, float t) {
float r = length(p);
float theta = acos(p.y / r);
float phi = atan(p.z, p.x);
// Three modes for a rich, cymatic effect:
float d1 = sin(3.0 * theta + t) * sin(4.0 * phi + 1.3 * t);
float d2 = cos(5.0 * theta - 0.7 * t) * sin(2.0 * phi + 1.1 * t);
float d3 = sin(7.0 * theta + 3.0 * t) * cos(6.0 * phi - 2.0 * t);
return 0.2 * (d1 + d2 + d3);
}
// Signed distance function for the deformed (cymatic) sphere.
// Base sphere has radius 1.0; its radius is perturbed by sphereDisplacement.
float sdCymaticSphere(vec3 p, float t) {
return length(p) - (1.0 + sphereDisplacement(p, t));
}
// Compute the normal at point p via finite differences of the SDF.
vec3 calcNormal(vec3 p, float t) {
float eps = 0.001;
vec3 n;
n.x = sdCymaticSphere(p + vec3(eps, 0.0, 0.0), t) - sdCymaticSphere(p - vec3(eps, 0.0, 0.0), t);
n.y = sdCymaticSphere(p + vec3(0.0, eps, 0.0), t) - sdCymaticSphere(p - vec3(0.0, eps, 0.0), t);
n.z = sdCymaticSphere(p + vec3(0.0, 0.0, eps), t) - sdCymaticSphere(p - vec3(0.0, 0.0, eps), t);
return normalize(n);
}
// Rayβmarching routine to find the intersection of a ray with the deformed sphere.
float raymarch(vec3 ro, vec3 rd, float t, out vec3 pos) {
float depth = 0.0;
for (int i = 0; i < 100; i++) {
pos = ro + rd * depth;
float dist = sdCymaticSphere(pos, t);
if (abs(dist) < 0.001) {
return depth;
}
depth += dist;
if (depth >= 20.0) break;
}
return -1.0;
}
void main() {
// Normalized pixel coordinates (centered on zero)
vec2 uv = (gl_FragCoord.xy - 0.5 * iResolution.xy) / iResolution.y;
// Use mouse position to control the cameraβs azimuth and pitch.
float angle = iMouse.x / iResolution.x * 6.28318;
float pitch = mix(0.3, 1.2, iMouse.y / iResolution.y);
float radius = 4.0;
vec3 ro = vec3(
radius * cos(pitch) * cos(angle),
radius * sin(pitch),
radius * cos(pitch) * sin(angle)
);
vec3 target = vec3(0.0);
// Build a simple camera coordinate system.
vec3 forward = normalize(target - ro);
vec3 right = normalize(cross(forward, vec3(0.0, 1.0, 0.0)));
vec3 up = cross(right, forward);
// Compute the ray direction.
vec3 rd = normalize(forward + uv.x * right + uv.y * up);
// Rayβmarch the scene.
vec3 pos;
float d = raymarch(ro, rd, iTime, pos);
vec3 color;
if (d > 0.0) {
// Surface hit: compute normal for lighting.
vec3 normal = calcNormal(pos, iTime);
vec3 lightDir = normalize(vec3(0.8, 1.0, 0.6));
float diff = max(dot(normal, lightDir), 0.0);
vec3 viewDir = normalize(ro - pos);
vec3 halfDir = normalize(lightDir + viewDir);
float spec = pow(max(dot(normal, halfDir), 0.0), 32.0);
// Compute spherical coordinates for the hit point.
float rPos = length(pos);
float theta = acos(pos.y / rPos);
float phi = atan(pos.z, pos.x);
// Use the cymatic displacement to drive the wild color palette.
float sp = sphereDisplacement(pos, iTime);
float factor = sp * 5.0;
vec3 baseColor = wildPalette(factor + sin(iTime));
// Add intricate stripe textures via highβfrequency sine patterns.
float stripes = sin(10.0 * phi + iTime) * sin(10.0 * theta + iTime);
baseColor *= 0.5 + 0.5 * stripes;
// Combine the base color with lighting.
color = baseColor * diff + vec3(0.2) * spec;
color = mix(color, baseColor, 0.3);
} else {
// No hit: use a subtle background gradient.
color = mix(vec3(0.0, 0.0, 0.1), vec3(0.0), uv.y + 0.5);
}
outColor = vec4(color, 1.0);
}
`;
//ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
// Create and compile the shader program using webgl-utils.
const program = webglUtils.createProgramFromSources(gl, [vs, fs]);
// Look up attribute and uniform locations.
const positionAttributeLocation = gl.getAttribLocation(program, "a_position");
const resolutionLocation = gl.getUniformLocation(program, "iResolution");
const mouseLocation = gl.getUniformLocation(program, "iMouse");
const timeLocation = gl.getUniformLocation(program, "iTime");
// Create a vertex array object (VAO) and bind it.
const vao = gl.createVertexArray();
gl.bindVertexArray(vao);
// Create a buffer and put a fullβscreen quad in it.
const positionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(
gl.ARRAY_BUFFER,
new Float32Array([
-1, -1,
1, -1,
-1, 1,
-1, 1,
1, -1,
1, 1,
]),
gl.STATIC_DRAW
);
// Enable the attribute.
gl.enableVertexAttribArray(positionAttributeLocation);
gl.vertexAttribPointer(
positionAttributeLocation,
2, // 2 components per vertex
gl.FLOAT, // data type is float
false,
0,
0
);
//ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
// Set up mouse/touch interactions.
const playpauseElem = document.querySelector(".playpause");
const inputElem = document.querySelector(".divcanvas");
inputElem.addEventListener("mouseover", requestFrame);
inputElem.addEventListener("mouseout", cancelFrame);
let mouseX = 0;
let mouseY = 0;
function setMousePosition(e) {
const rect = inputElem.getBoundingClientRect();
mouseX = e.clientX - rect.left;
mouseY = rect.height - (e.clientY - rect.top) - 1;
}
inputElem.addEventListener("mousemove", setMousePosition);
inputElem.addEventListener("touchstart", (e) => {
e.preventDefault();
playpauseElem.classList.add("playpausehide");
requestFrame();
}, { passive: false });
inputElem.addEventListener("touchmove", (e) => {
e.preventDefault();
setMousePosition(e.touches[0]);
}, { passive: false });
inputElem.addEventListener("touchend", (e) => {
e.preventDefault();
playpauseElem.classList.remove("playpausehide");
cancelFrame();
}, { passive: false });
//ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
// Animation loop.
let requestId;
function requestFrame() {
if (!requestId) {
requestId = requestAnimationFrame(render);
}
}
function cancelFrame() {
if (requestId) {
cancelAnimationFrame(requestId);
requestId = undefined;
}
}
let then = 0;
let time = 0;
function render(now) {
requestId = undefined;
now *= 0.001; // Convert to seconds.
const elapsedTime = Math.min(now - then, 0.1);
time += elapsedTime;
then = now;
webglUtils.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.useProgram(program);
gl.bindVertexArray(vao);
// Set uniforms.
gl.uniform2f(resolutionLocation, gl.canvas.width, gl.canvas.height);
gl.uniform2f(mouseLocation, mouseX, mouseY);
gl.uniform1f(timeLocation, time);
gl.drawArrays(gl.TRIANGLES, 0, 6);
requestFrame();
}
requestFrame();
requestAnimationFrame(cancelFrame);
}
main();
|