SeyedAli commited on
Commit
fadc5b3
·
1 Parent(s): 6d82009

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -26
app.py DELETED
@@ -1,26 +0,0 @@
1
- from diffusers import DiffusionPipeline
2
- import torch
3
- import PIL.Image
4
- import gradio as gr
5
- import random
6
- import numpy as np
7
-
8
- pipeline = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128")
9
-
10
- def predict(steps, seed):
11
- generator = torch.manual_seed(seed)
12
- for i in range(1,steps):
13
- yield pipeline(generator=generator, num_inference_steps=i).images[0]
14
-
15
- random_seed = random.randint(0, 2147483647)
16
- gr.Interface(
17
- predict,
18
- inputs=[
19
- gr.inputs.Slider(1, 100, label='Inference Steps', default=5, step=1),
20
- gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
21
- ],
22
- outputs=gr.Image(shape=[128,128], type="pil", elem_id="output_image"),
23
- css="#output_image{width: 256px}",
24
- title="Unconditional butterflies",
25
- description="A DDPM scheduler and UNet model trained (from this <a href=\"https://huggingface.co/anton-l/ddpm-butterflies-128\">checkpoint</a>) on a subset of the <a href=\"https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset\">Smithsonian Butterflies</a> dataset for unconditional image generation.",
26
- ).queue().launch()