SeyedAli commited on
Commit
3b6f2f5
·
1 Parent(s): 03ab146

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ __pycache__/
2
+ venv/
README.md CHANGED
@@ -1,13 +1,12 @@
1
  ---
2
  title: Image Similarity
3
- emoji: 🏃
4
- colorFrom: gray
5
- colorTo: blue
6
  sdk: gradio
7
- sdk_version: 3.45.1
8
  app_file: app.py
9
  pinned: false
10
- license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: Image Similarity
3
+ emoji: 🐨
4
+ colorFrom: red
5
+ colorTo: green
6
  sdk: gradio
7
+ sdk_version: 3.16.0
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import random
4
+ from src.model import simlarity_model as model
5
+ from src.similarity.similarity import Similarity
6
+
7
+ similarity = Similarity()
8
+ models = similarity.get_models()
9
+
10
+ def check(img_main, img_1, img_2, model_idx):
11
+ result = similarity.check_similarity([img_main, img_1, img_2], models[model_idx])
12
+ return result
13
+
14
+ with gr.Blocks() as demo:
15
+ gr.Markdown('Checking Image Similarity')
16
+ img_main = gr.Text(label='Main Image', placeholder='https://myimage.jpg')
17
+
18
+ gr.Markdown('Images to check')
19
+ img_1 = gr.Text(label='1st Image', placeholder='https://myimage_1.jpg')
20
+ img_2 = gr.Text(label='2nd Image', placeholder='https://myimage_2.jpg')
21
+
22
+ gr.Markdown('Choose the model')
23
+ model = gr.Dropdown([m.name for m in models], label='Model', type='index')
24
+
25
+ gallery = gr.Gallery(
26
+ label="Generated images", show_label=False, elem_id="gallery"
27
+ ).style(grid=[2], height="auto")
28
+
29
+ submit_btn = gr.Button('Check Similarity')
30
+ submit_btn.click(fn=check,inputs=[img_main, img_1, img_2, model], outputs=gallery)
31
+
32
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.3.0
2
+ aiohttp==3.8.3
3
+ aiosignal==1.3.1
4
+ altair==4.2.0
5
+ anyio==3.6.2
6
+ astunparse==1.6.3
7
+ async-timeout==4.0.2
8
+ attrs==22.2.0
9
+ cachetools==5.2.0
10
+ certifi==2022.12.7
11
+ charset-normalizer==2.1.1
12
+ click==8.1.3
13
+ contourpy==1.0.6
14
+ cycler==0.11.0
15
+ entrypoints==0.4
16
+ fastapi==0.88.0
17
+ ffmpy==0.3.0
18
+ filelock==3.9.0
19
+ flatbuffers==23.1.4
20
+ fonttools==4.38.0
21
+ frozenlist==1.3.3
22
+ fsspec==2022.11.0
23
+ gast==0.4.0
24
+ google-auth==2.15.0
25
+ google-auth-oauthlib==0.4.6
26
+ google-pasta==0.2.0
27
+ gradio==3.16.0
28
+ grpcio==1.51.1
29
+ h11==0.14.0
30
+ h5py==3.7.0
31
+ httpcore==0.16.3
32
+ httpx==0.23.3
33
+ huggingface-hub==0.11.1
34
+ idna==3.4
35
+ importlib-metadata==6.0.0
36
+ importlib-resources==5.10.2
37
+ Jinja2==3.1.2
38
+ jsonschema==4.17.3
39
+ keras==2.11.0
40
+ kiwisolver==1.4.4
41
+ libclang==14.0.6
42
+ linkify-it-py==1.0.3
43
+ Markdown==3.4.1
44
+ markdown-it-py==2.1.0
45
+ MarkupSafe==2.1.1
46
+ matplotlib==3.6.2
47
+ mdit-py-plugins==0.3.3
48
+ mdurl==0.1.2
49
+ multidict==6.0.4
50
+ numpy==1.24.1
51
+ nvidia-cublas-cu11==11.10.3.66
52
+ nvidia-cuda-nvrtc-cu11==11.7.99
53
+ nvidia-cuda-runtime-cu11==11.7.99
54
+ nvidia-cudnn-cu11==8.5.0.96
55
+ oauthlib==3.2.2
56
+ opt-einsum==3.3.0
57
+ orjson==3.8.4
58
+ packaging==22.0
59
+ pandas==1.5.2
60
+ Pillow==9.4.0
61
+ pkgutil_resolve_name==1.3.10
62
+ protobuf==3.19.6
63
+ pyasn1==0.4.8
64
+ pyasn1-modules==0.2.8
65
+ pycryptodome==3.16.0
66
+ pydantic==1.10.4
67
+ pydub==0.25.1
68
+ pyparsing==3.0.9
69
+ pyrsistent==0.19.3
70
+ python-dateutil==2.8.2
71
+ python-multipart==0.0.5
72
+ pytz==2022.7
73
+ PyYAML==6.0
74
+ regex==2022.10.31
75
+ requests==2.28.1
76
+ requests-oauthlib==1.3.1
77
+ rfc3986==1.5.0
78
+ rsa==4.9
79
+ six==1.16.0
80
+ sniffio==1.3.0
81
+ starlette==0.22.0
82
+ tensorboard==2.11.0
83
+ tensorboard-data-server==0.6.1
84
+ tensorboard-plugin-wit==1.8.1
85
+ tensorflow==2.11.0
86
+ tensorflow-estimator==2.11.0
87
+ tensorflow-hub==0.12.0
88
+ tensorflow-io-gcs-filesystem==0.29.0
89
+ termcolor==2.2.0
90
+ tokenizers==0.13.2
91
+ toolz==0.12.0
92
+ torch==1.13.1
93
+ tqdm==4.64.1
94
+ transformers==4.25.1
95
+ typing_extensions==4.4.0
96
+ uc-micro-py==1.0.1
97
+ urllib3==1.26.13
98
+ uvicorn==0.20.0
99
+ websockets==10.4
100
+ Werkzeug==2.2.2
101
+ wrapt==1.14.1
102
+ yarl==1.8.2
103
+ zipp==3.11.0
src/model/similarity_interface.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ class SimilarityInterface:
2
+ def extract_feature(img):
3
+ return []
src/model/simlarity_model.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from .similarity_interface import SimilarityInterface
3
+
4
+ @dataclass
5
+ class SimilarityModel:
6
+ name: str
7
+ image_size: int
8
+ model_cls: SimilarityInterface
9
+ image_input_type: str = 'array'
src/similarity/model_implements/bit.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow_hub as hub
2
+ import numpy as np
3
+
4
+ class BigTransfer:
5
+
6
+ def __init__(self):
7
+ self.module = hub.KerasLayer("https://tfhub.dev/google/bit/m-r50x1/1")
8
+
9
+ def extract_feature(self, imgs):
10
+ features = []
11
+ for img in imgs:
12
+ features.append(np.squeeze(self.module(img)))
13
+ return features
src/similarity/model_implements/mobilenet_v3.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow_hub as hub
2
+ import numpy as np
3
+
4
+ class ModelnetV3():
5
+ def __init__(self):
6
+ module_handle = "https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/feature_vector/5"
7
+ self.module = hub.load(module_handle)
8
+
9
+ def extract_feature(self, imgs):
10
+ print('getting with ModelnetV3...')
11
+ features = []
12
+ for img in imgs:
13
+ features.append(np.squeeze(self.module(img)))
14
+ return features
src/similarity/model_implements/vit_base.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import ViTFeatureExtractor, ViTModel
2
+ from PIL import Image
3
+ import numpy as np
4
+ import torch
5
+
6
+ class VitBase():
7
+
8
+ def __init__(self):
9
+ self.feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
10
+ self.model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
11
+
12
+ def extract_feature(self, imgs):
13
+ features = []
14
+ for img in imgs:
15
+ inputs = self.feature_extractor(images=img, return_tensors="pt")
16
+ with torch.no_grad():
17
+ outputs = self.model(**inputs)
18
+ last_hidden_states = outputs.last_hidden_state
19
+ features.append(np.squeeze(last_hidden_states.numpy()).flatten())
20
+ return features
src/similarity/similarity.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.model import simlarity_model as model
2
+ from src.util import image as image_util
3
+ from src.util import matrix
4
+ from .model_implements.mobilenet_v3 import ModelnetV3
5
+ from .model_implements.vit_base import VitBase
6
+ from .model_implements.bit import BigTransfer
7
+
8
+
9
+ class Similarity:
10
+ def get_models(self):
11
+ return [
12
+ model.SimilarityModel(name= 'Mobilenet V3', image_size= 224, model_cls = ModelnetV3()),
13
+ model.SimilarityModel(name= 'Big Transfer (BiT)', image_size= 224, model_cls = BigTransfer()),
14
+ model.SimilarityModel(name= 'Vision Transformer', image_size= 224, model_cls = VitBase(), image_input_type='pil'),
15
+ ]
16
+
17
+ def check_similarity(self, img_urls, model):
18
+ imgs = []
19
+ for url in img_urls:
20
+ if url == "": continue
21
+ imgs.append(image_util.load_image_url(url, required_size=(model.image_size, model.image_size), image_type=model.image_input_type))
22
+
23
+ features = model.model_cls.extract_feature(imgs)
24
+ results = []
25
+ for i, v in enumerate(features):
26
+ if i == 0: continue
27
+ dist = matrix.cosine(features[0], v)
28
+ print(f'{i} -- distance: {dist}')
29
+ # results.append((imgs[i], f'similarity: {int(dist*100)}%'))
30
+ original_img = image_util.load_image_url(img_urls[i], required_size=None, image_type='pil')
31
+ results.append((original_img, f'similarity: {int(dist*100)}%'))
32
+
33
+ return results
34
+
35
+
src/util/image.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import numpy as np
3
+ import requests
4
+
5
+ def load_image_url(url, required_size = (224,224), image_type = 'array'):
6
+ print(f'downloading.. {url}, type: {image_type}')
7
+ img = Image.open(requests.get(url, stream=True).raw)
8
+ img = Image.fromarray(np.array(img))
9
+ if required_size is not None:
10
+ img = img.resize(required_size)
11
+ if image_type == 'array':
12
+ img = (np.expand_dims(np.array(img), 0)/255).astype(np.float32)
13
+ return img
src/util/matrix.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from numpy.linalg import norm
2
+ import numpy as np
3
+
4
+ def cosine(x, y):
5
+ return np.dot(x,y)/(norm(x)*norm(y))