Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.models.wav2vec2.modeling_wav2vec2 import ( | |
Wav2Vec2PreTrainedModel, | |
Wav2Vec2Model | |
) | |
from transformers.models.hubert.modeling_hubert import ( | |
HubertPreTrainedModel, | |
HubertModel | |
) | |
from src.modeling_outputs import SpeechClassifierOutput | |
class Wav2Vec2ClassificationHead(nn.Module): | |
"""Head for wav2vec classification task.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.final_dropout) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x = features | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class Wav2Vec2ForSpeechClassification(Wav2Vec2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.pooling_mode = config.pooling_mode | |
self.config = config | |
self.wav2vec2 = Wav2Vec2Model(config) | |
self.classifier = Wav2Vec2ClassificationHead(config) | |
self.init_weights() | |
def freeze_feature_extractor(self): | |
self.wav2vec2.feature_extractor._freeze_parameters() | |
def merged_strategy( | |
self, | |
hidden_states, | |
mode="mean" | |
): | |
if mode == "mean": | |
outputs = torch.mean(hidden_states, dim=1) | |
elif mode == "sum": | |
outputs = torch.sum(hidden_states, dim=1) | |
elif mode == "max": | |
outputs = torch.max(hidden_states, dim=1)[0] | |
else: | |
raise Exception( | |
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']") | |
return outputs | |
def forward( | |
self, | |
input_values, | |
attention_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
labels=None, | |
): | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.wav2vec2( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode) | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SpeechClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class HubertClassificationHead(nn.Module): | |
"""Head for hubert classification task.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.final_dropout) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x = features | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class HubertForSpeechClassification(HubertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.pooling_mode = config.pooling_mode | |
self.config = config | |
self.hubert = HubertModel(config) | |
self.classifier = HubertClassificationHead(config) | |
self.init_weights() | |
def freeze_feature_extractor(self): | |
self.hubert.feature_extractor._freeze_parameters() | |
def merged_strategy( | |
self, | |
hidden_states, | |
mode="mean" | |
): | |
if mode == "mean": | |
outputs = torch.mean(hidden_states, dim=1) | |
elif mode == "sum": | |
outputs = torch.sum(hidden_states, dim=1) | |
elif mode == "max": | |
outputs = torch.max(hidden_states, dim=1)[0] | |
else: | |
raise Exception( | |
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']") | |
return outputs | |
def forward( | |
self, | |
input_values, | |
attention_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
labels=None, | |
): | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.hubert( | |
input_values, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode) | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SpeechClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |