ShAnSantosh commited on
Commit
5b53652
·
1 Parent(s): 8138fa1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -2
app.py CHANGED
@@ -4,7 +4,35 @@ import torch
4
  tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
5
  model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
6
  """
7
- def predict(input, history=[]):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  """
9
  # tokenize the new input sentence
10
  new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
@@ -19,7 +47,25 @@ def predict(input, history=[]):
19
  response = tokenizer.decode(history[0]).split("<|endoftext|>")
20
  response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
21
  """
22
- return 'hi', 'hello'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  import gradio as gr
25
 
 
4
  tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
5
  model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
6
  """
7
+
8
+ import random
9
+ import json
10
+
11
+ import torch
12
+
13
+ from model import NeuralNet
14
+ from nltk_utils import bag_of_words, tokenize
15
+
16
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
17
+
18
+ with open('./intents.json', 'r') as json_data:
19
+ intents = json.load(json_data)
20
+
21
+ FILE = "./data.pth"
22
+ data = torch.load(FILE)
23
+
24
+ input_size = data["input_size"]
25
+ hidden_size = data["hidden_size"]
26
+ output_size = data["output_size"]
27
+ all_words = data['all_words']
28
+ tags = data['tags']
29
+ model_state = data["model_state"]
30
+
31
+ model = NeuralNet(input_size, hidden_size, output_size).to(device)
32
+ model.load_state_dict(model_state)
33
+ model.eval()
34
+
35
+ def predict(sentence, history=[]):
36
  """
37
  # tokenize the new input sentence
38
  new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
 
47
  response = tokenizer.decode(history[0]).split("<|endoftext|>")
48
  response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
49
  """
50
+
51
+ sentence = tokenize(sentence)
52
+ X = bag_of_words(sentence, all_words)
53
+ X = X.reshape(1, X.shape[0])
54
+ X = torch.from_numpy(X).to(device)
55
+
56
+ output = model(X)
57
+ _, predicted = torch.max(output, dim=1)
58
+
59
+ tag = tags[predicted.item()]
60
+
61
+ probs = torch.softmax(output, dim=1)
62
+ prob = probs[0][predicted.item()]
63
+ if prob.item() > 0.75:
64
+ for intent in intents['intents']:
65
+ if tag == intent["tag"]:
66
+ reply = random.choice(intent['responses'])
67
+
68
+ return reply, history
69
 
70
  import gradio as gr
71