Spaces:
Runtime error
Runtime error
import torch | |
import transformers | |
from transformers import BertTokenizer, BertForMaskedLM | |
import gradio as gr | |
device = torch.device('cpu') | |
NUM_CLASSES=6 | |
#model=BertForMaskedLM.from_pretrained("./") | |
#tokenizer=BertTokenizer.from_pretrained("./") | |
def predict(text=None) -> dict: | |
print(text) | |
model.eval() | |
inputs = tokenizer(text, return_tensors="pt") | |
input_ids = inputs["input_ids"].to(device) | |
attention_mask = inputs["attention_mask"].to(device) | |
model.to(device) | |
token_logits = model(input_ids, attention_mask=attention_mask).logits | |
mask_token_index = torch.where(inputs_ex["input_ids"] == tokenizer.mask_token_id)[1] | |
mask_token_logits = token_logits[0, mask_token_index, :] | |
top_5_tokens = torch.topk(mask_token_logits, NUM_CLASSES, dim=1).indices[0].tolist() | |
score = torch.nn.functional.softmax(mask_token_logits)[0] | |
top_5_score = torch.topk(score, NUM_CLASSES).values.tolist() | |
print(top_5_tokens) | |
return {tokenizer.decode([tok]): float(score) for tok, score in zip(top_5_tokens, top_5_score)} | |
def test(): | |
return {"token": 0.57} | |
gr.Interface(fn=test, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Your Text… "), | |
title="Mask Language Modeling - Demo", | |
outputs=gr.outputs.Label(num_top_classes=1)).launch() |