Spaces:
Sleeping
Sleeping
import streamlit as st | |
from diffusers import DiffusionPipeline | |
import torch | |
import os | |
def load_pipeline(): | |
# Get the token from the environment variable | |
token = os.environ.get("HUGGING_FACE_HUB_TOKEN") | |
if not token: | |
st.error("Hugging Face token not found. Please check your Hugging Face Spaces secrets.") | |
st.stop() | |
pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", use_auth_token=token) | |
pipeline.load_lora_weights("gorkemyurt/lora-train") | |
return pipeline | |
st.title("FLUX.1 Diffusion Model with LoRA") | |
pipeline = load_pipeline() | |
prompt = st.text_input("Enter your prompt:", "A beautiful landscape with mountains and a lake") | |
num_inference_steps = st.slider("Number of inference steps:", min_value=1, max_value=100, value=50) | |
guidance_scale = st.slider("Guidance scale:", min_value=1.0, max_value=20.0, value=7.5, step=0.1) | |
if st.button("Generate Image"): | |
with st.spinner("Generating image..."): | |
image = pipeline( | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale | |
).images[0] | |
st.image(image, caption="Generated Image", use_column_width=True) |