Spaces:
Sleeping
Sleeping
File size: 37,112 Bytes
b7b7347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 |
from shared import DatasetArguments
from utils import jaccard
from functools import lru_cache
from datetime import datetime
import itertools
from typing import Optional
import model as model_module
import segment
from tqdm import tqdm
from dataclasses import dataclass, field
from transformers import HfArgumentParser
from shared import extract_sponsor_matches_from_text, ACTION_OPTIONS, CATEGORIES, CATGEGORY_OPTIONS, START_SEGMENT_TEMPLATE, END_SEGMENT_TEMPLATE, GeneralArguments, CustomTokens
import csv
import re
import random
import logging
from youtube_transcript_api import YouTubeTranscriptApi, CouldNotRetrieveTranscript, YouTubeRequestFailed, TooManyRequests
import os
import json
import time
import requests
logging.basicConfig()
logger = logging.getLogger(__name__)
PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
PROFANITY_CONVERTED = '*****' # Safer version for tokenizing
NUM_DECIMALS = 3
# https://www.fincher.org/Utilities/CountryLanguageList.shtml
# https://lingohub.com/developers/supported-locales/language-designators-with-regions
LANGUAGE_PREFERENCE_LIST = ['en-GB', 'en-US', 'en-CA', 'en-AU', 'en-NZ', 'en-ZA',
'en-IE', 'en-IN', 'en-JM', 'en-BZ', 'en-TT', 'en-PH', 'en-ZW',
'en']
def parse_transcript_json(json_data, granularity):
assert json_data['wireMagic'] == 'pb3'
assert granularity in ('word', 'chunk')
# TODO remove bracketed words?
# (kiss smacks)
# (upbeat music)
# [text goes here]
# Some manual transcripts aren't that well formatted... but do have punctuation
# https://www.youtube.com/watch?v=LR9FtWVjk2c
parsed_transcript = []
events = json_data['events']
for event_index, event in enumerate(events):
segments = event.get('segs')
if not segments:
continue
# This value is known (when phrase appears on screen)
start_ms = event['tStartMs']
total_characters = 0
new_segments = []
for seg in segments:
# Replace \n, \t, etc. with space
text = ' '.join(seg['utf8'].split())
# Remove zero-width spaces and strip trailing and leading whitespace
text = text.replace('\u200b', '').replace('\u200c', '').replace(
'\u200d', '').replace('\ufeff', '').strip()
# Alternatively,
# text = text.encode('ascii', 'ignore').decode()
# Needed for auto-generated transcripts
text = text.replace(PROFANITY_RAW, PROFANITY_CONVERTED)
if not text:
continue
offset_ms = seg.get('tOffsetMs', 0)
new_segments.append({
'text': text,
'start': round((start_ms + offset_ms)/1000, NUM_DECIMALS)
})
total_characters += len(text)
if not new_segments:
continue
if event_index < len(events) - 1:
next_start_ms = events[event_index + 1]['tStartMs']
total_event_duration_ms = min(
event.get('dDurationMs', float('inf')), next_start_ms - start_ms)
else:
total_event_duration_ms = event.get('dDurationMs', 0)
# Ensure duration is non-negative
total_event_duration_ms = max(total_event_duration_ms, 0)
avg_seconds_per_character = (
total_event_duration_ms/total_characters)/1000
num_char_count = 0
for seg_index, seg in enumerate(new_segments):
num_char_count += len(seg['text'])
# Estimate segment end
seg_end = seg['start'] + \
(num_char_count * avg_seconds_per_character)
if seg_index < len(new_segments) - 1:
# Do not allow longer than next
seg_end = min(seg_end, new_segments[seg_index+1]['start'])
seg['end'] = round(seg_end, NUM_DECIMALS)
parsed_transcript.append(seg)
final_parsed_transcript = []
for i in range(len(parsed_transcript)):
word_level = granularity == 'word'
if word_level:
split_text = parsed_transcript[i]['text'].split()
elif granularity == 'chunk':
# Split on space after punctuation
split_text = re.split(
r'(?<=[.!?,-;])\s+', parsed_transcript[i]['text'])
if len(split_text) == 1:
split_on_whitespace = parsed_transcript[i]['text'].split()
if len(split_on_whitespace) >= 8: # Too many words
# Rather split on whitespace instead of punctuation
split_text = split_on_whitespace
else:
word_level = True
else:
raise ValueError('Unknown granularity')
segment_end = parsed_transcript[i]['end']
if i < len(parsed_transcript) - 1:
segment_end = min(segment_end, parsed_transcript[i+1]['start'])
segment_duration = segment_end - parsed_transcript[i]['start']
num_chars_in_text = sum(map(len, split_text))
num_char_count = 0
current_offset = 0
for s in split_text:
num_char_count += len(s)
next_offset = (num_char_count/num_chars_in_text) * segment_duration
word_start = round(
parsed_transcript[i]['start'] + current_offset, NUM_DECIMALS)
word_end = round(
parsed_transcript[i]['start'] + next_offset, NUM_DECIMALS)
# Make the reasonable assumption that min wps is 1.5
final_parsed_transcript.append({
'text': s,
'start': word_start,
'end': min(word_end, word_start + 1.5) if word_level else word_end
})
current_offset = next_offset
return final_parsed_transcript
def list_transcripts(video_id):
try:
return YouTubeTranscriptApi.list_transcripts(video_id)
except json.decoder.JSONDecodeError:
return None
WORDS_TO_REMOVE = [
CustomTokens.MUSIC.value,
CustomTokens.APPLAUSE.value,
CustomTokens.LAUGHTER.value
]
@lru_cache(maxsize=16)
def get_words(video_id, process=True, transcript_type='auto', fallback='manual', filter_words_to_remove=True, download=False, granularity='word'):
"""Get parsed video transcript with caching system
returns None if not processed yet and process is False
"""
# NOTE: granularity='chunk' should only be used for generating training data... nowhere else
transcript_path = os.path.join( # TODO use relative path to this
'transcripts', transcript_type, f'{video_id}.json')
raw_transcript_json = None
try:
if not download and os.path.exists(transcript_path): # Load from file
with open(transcript_path) as fp:
raw_transcript_json = json.load(fp) # May be empty
elif process:
transcript_list = list_transcripts(video_id)
if transcript_list is not None:
if transcript_type == 'manual':
ts = transcript_list.find_manually_created_transcript(
LANGUAGE_PREFERENCE_LIST)
else:
ts = transcript_list.find_generated_transcript(
LANGUAGE_PREFERENCE_LIST)
raw_transcript = ts._http_client.get(
f'{ts._url}&fmt=json3').content
if raw_transcript:
raw_transcript_json = json.loads(raw_transcript)
except (TooManyRequests, YouTubeRequestFailed):
raise # Cannot recover from these errors and do not mark as empty transcript
except requests.exceptions.RequestException: # Can recover
time.sleep(10) # Timeout
return get_words(video_id, process, transcript_type, fallback, granularity)
except CouldNotRetrieveTranscript: # Retrying won't solve
pass # Mark as empty transcript
except json.decoder.JSONDecodeError:
logger.warning(f'JSONDecodeError for {video_id}')
if os.path.exists(transcript_path):
os.remove(transcript_path) # Remove file and try again
return get_words(video_id, process, transcript_type, fallback, granularity)
# Tried to process it, but it was empty...
if download or (process and not os.path.exists(transcript_path)):
with open(transcript_path, 'w') as fp:
json.dump(raw_transcript_json, fp)
if not raw_transcript_json and fallback is not None:
return get_words(video_id, process, transcript_type=fallback, fallback=None, granularity=granularity)
if raw_transcript_json:
processed_transcript = parse_transcript_json(
raw_transcript_json, granularity)
if filter_words_to_remove:
processed_transcript = list(
filter(lambda x: x['text'] not in WORDS_TO_REMOVE, processed_transcript))
else:
processed_transcript = raw_transcript_json # Either None or []
return processed_transcript
# TODO make min_sponsor_segment_length param
# TODO rename to extract_segments
def extract_sponsors(words, min_sponsor_segment_length=3):
if not words:
return []
paragraphs = []
current = []
prev_category = None
for i in range(len(words) + 1):
unimportant = i == len(words) or words[i].get('category') is None
if unimportant or words[i].get('category') != prev_category:
if current: # Save the current batch
paragraphs.append({
'words': current,
'category': current[-1].get('category'),
})
current = []
if not unimportant: # Some useful information to save
current.append(words[i])
prev_category = words[i].get('category')
# Remove all too short:
return list(filter(lambda x: len(x['words']) >= min_sponsor_segment_length, paragraphs))
def clean_text(text):
# Replace impossibly long words with a special token
# Usually the result of incorrect labelling
text = re.sub(r'\w{64,}', CustomTokens.LONG_WORD.value, text)
SHORT_HYPHENATED_REGEX = r'\w{1,2}(?:-\w{1,2}){3,}(?:-?\w*)'
# Replace hyphenated URLs with special token
# For some reason, youtube sometimes transcribes urls in this form:
# 'b-a-b-b-e-l-dot-com', 'g-e-t-r-o-m-a-n-com'
# not 'e-commerce'
text = re.sub(f'{SHORT_HYPHENATED_REGEX}(?:com|org|net)',
CustomTokens.HYPHENATED_URL.value, text)
# Replace short+hyphenated text with a special token. Of the form:
# 'i-i-i-i-i-i-i-i-i-i-i-i', 'b-u-m-f-u-z-z-l-e', 'v-e-r-i-t-a-s-i-u-m', 'do-do-do-do-do'
text = re.sub(SHORT_HYPHENATED_REGEX,
CustomTokens.SHORT_HYPHENATED.value, text)
# Replace URLs with URL_TOKEN
URL_REGEX = r'(?:(?:http|https)\:\/\/)?[a-zA-Z0-9\.\/\?\:@\-_=#]+\.(?:[a-zA-Z]){2,6}(?:[a-zA-Z0-9\.\&\/\?\:@\-_=#%])*'
text = re.sub(URL_REGEX, CustomTokens.URL.value, text)
NUM_REGEX = r'(?:\d+,)*(?:\d*[.])?\d+'
# Encode specific numeric words
# Of the form: 12%, 12.34%
# Usually included in sponsorships
text = re.sub(f'{NUM_REGEX}%',
CustomTokens.NUMBER_PERCENTAGE.value, text)
# Normal numbers, should not have an effect on sponsorship
text = re.sub(NUM_REGEX, CustomTokens.NUMBER.value, text)
# Replace profanity with special token
text = text.replace(PROFANITY_RAW, CustomTokens.PROFANITY.value)
text = text.replace(PROFANITY_CONVERTED, CustomTokens.PROFANITY.value)
return text.strip()
def remove_duplicate_segments(segments):
# Algorithm based on SponsorBlock algorithm
# https://blog.ajay.app/voting-and-pseudo-randomness-or-sponsorblock-or-youtube-sponsorship-segment-blocker
# Find sponsors that are overlapping
best = []
for i in segments:
similar_segments = []
for j in segments:
if jaccard(i['start'], i['end'], j['start'], j['end']) > 0.1: # Some overlap
similar_segments.append(j)
if similar_segments:
best_similar_seg = max(similar_segments, key=lambda item: (
item['locked'],
item['votes'],
item['views'],
item['reputation']
))
if best_similar_seg not in best:
best.append(best_similar_seg)
if len(segments) != len(best): # Saw some reduction... try again
return remove_duplicate_segments(best)
return best
@dataclass
class PreprocessArguments:
"""
Arguments pertaining to what data we are going to preprocess.
"""
update_database: bool = field(
default=False, metadata={'help': 'Download the raw database.'}
)
do_create: bool = field(
default=False, metadata={'help': 'Merge sponsor segments into single file'}
)
min_votes: int = field(
default=0, metadata={'help': 'Minimum number of votes'})
# Downvotes will make this negative.
# 1 = At least one positive vote
max_segment_duration: float = field(
default=180, # 3 minutes
# >180 => 2.8%
# >200 => 2.1%
# >250 => 1.1%
# >300 => 0.06%
metadata={'help': 'Ignore all segments whose duration in seconds is longer than this value (negative means no limit)'})
min_views: int = field(
default=5, metadata={'help': 'Minimum number of views a segment must have to be considered. 0 = show all'})
# min_reputation: int = field(
# default=0, metadata={'help': 'Minimum reputation a user must have for the segment to be included'})
min_date: str = field(
# default='08/06/2020', # release of v2.0 (https://github.com/ajayyy/SponsorBlock/releases/tag/2.0)
# release of v3.0 (https://github.com/ajayyy/SponsorBlock/releases/tag/3.0)
default='20/08/2021',
# default='01/10/2020', # No more autovote
metadata={'help': 'Only use submissions from after this date (inclusive)'})
max_date: str = field(
# default='01/01/9999', # Include all
default='15/04/2022',
metadata={'help': 'Only use videos that have some segment from before this date (exclusive). This allows for videos to have segments be corrected, but ignores new videos (posted after this date) to enter the pool.'})
# max_unseen_date: str = field( # TODO
# default='02/03/2022',
# metadata={'help': 'Generate test and validation data from `max_date` to `max_unseen_date`'})
# Specify min/max video id for splitting (seen vs. unseen)
keep_duplicate_segments: bool = field(
default=False, metadata={'help': 'Keep duplicate segments'}
)
do_process_database: bool = field(
default=False, metadata={'help': 'Process the raw database'}
)
do_transcribe: bool = field(
default=False, metadata={'help': 'Get transcripts for videos'}
)
num_jobs: int = field(
default=4, metadata={'help': 'Number of transcripts to download in parallel'})
# overwrite: bool = field(
# default=False, metadata={'help': 'Overwrite training, testing and validation data, if present.'}
# )
do_generate: bool = field(
default=False, metadata={'help': 'Generate labelled data.'}
)
do_split: bool = field(
default=False, metadata={'help': 'Generate training, testing and validation data.'}
)
positive_file: Optional[str] = field(
default='sponsor_segments.json', metadata={'help': 'File to output sponsored segments to (a jsonlines file).'}
)
negative_file: Optional[str] = field(
default='normal_segments.json', metadata={'help': 'File to output normal segments to (a jsonlines file).'}
)
percentage_positive: float = field(
default=0.5, metadata={'help': 'Ratio of positive (sponsor) segments to include in final output'})
train_split: float = field(
default=0.9, metadata={'help': 'Ratio of training data. Value between 0 and 1.'})
# TODO play around with ratios? lower test/validation split?
test_split: float = field(
default=0.05, metadata={'help': 'Ratio of testing data. Value between 0 and 1.'})
valid_split: float = field(
default=0.05, metadata={'help': 'Ratio of validation data. Value between 0 and 1.'})
start_index: int = field(default=None, metadata={
'help': 'Video to start at.'})
max_videos: int = field(default=None, metadata={
'help': 'Maximum number of videos to preprocess.'})
max_segments: int = field(default=None, metadata={
'help': 'Maximum number of segments to produce to preprocess.'})
raw_data_dir: Optional[str] = field(
default='raw',
metadata={
'help': 'Raw data directory'
},
)
raw_data_file: Optional[str] = field(
default='sponsorTimes.csv',
metadata={
'help': 'Raw data file'
},
)
min_wps: float = field(
default=1.5, metadata={'help': 'Ignore videos with not enough words spoken per second. This is usually indicitive of video whose captions aren\'t English.'})
# 0.1 ~ 1%
# 0.4 ~ 2.5%
# 0.9 ~ 5%
# Mirrors for database
MIRRORS = [
'https://sponsor.ajay.app/database/sponsorTimes.csv', # Latest
'https://sb-mirror.mchang.xyz/sponsorTimes.csv', # 5 minute delay
'https://sb.ltn.fi/database/sponsorTimes.csv', # 5 minute delay
]
# TODO only download latest updates/changes
def download_file(url, filename):
"""
Helper method handling downloading large files from `url` to `filename`.
Adapted from https://stackoverflow.com/a/42071418
"""
chunk_size = 1024
r = requests.get(url, stream=True)
total_bytes = int(r.headers['Content-Length'])
with open(filename, 'wb') as f, tqdm(unit='B', total=total_bytes) as progress:
for chunk in r.iter_content(chunk_size=chunk_size):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
f.write(chunk)
return total_bytes == os.path.getsize(filename)
def main():
# Responsible for getting transcrips using youtube_transcript_api,
# then labelling it according to SponsorBlock's API
logger.setLevel(logging.DEBUG)
# Generate final.json from sponsorTimes.csv
hf_parser = HfArgumentParser((
PreprocessArguments,
DatasetArguments,
segment.SegmentationArguments,
model_module.ModelArguments,
GeneralArguments
))
preprocess_args, dataset_args, segmentation_args, model_args, general_args = hf_parser.parse_args_into_dataclasses()
raw_dataset_path = os.path.join(
preprocess_args.raw_data_dir, preprocess_args.raw_data_file)
if preprocess_args.update_database:
logger.info('Updating database')
for mirror in MIRRORS:
logger.info(f'Downloading from {mirror}')
if download_file(mirror, raw_dataset_path):
break
logger.warning('Failed, trying next')
os.makedirs(dataset_args.data_dir, exist_ok=True)
processed_db_path = os.path.join(
dataset_args.data_dir, dataset_args.processed_database)
# TODO process all valid possible items and then do filtering only later
@lru_cache(maxsize=1)
def read_db():
# if not preprocess_args.overwrite and os.path.exists(processed_db_path):
# logger.info(
# 'Using cached processed database (use `--overwrite` to avoid this behaviour).')
# with open(processed_db_path) as fp:
# return json.load(fp)
logger.info('Processing raw database')
db = {}
allowed_categories = list(map(str.lower, CATGEGORY_OPTIONS))
with open(raw_dataset_path, newline='') as csvfile:
reader = csv.DictReader(csvfile)
for line in reader:
# Never show:
if line['service'] != 'YouTube':
continue
if len(line['videoID']) != 11:
continue # Invalid youtube video ID
if line['category'] not in allowed_categories:
continue
if line['actionType'] not in ACTION_OPTIONS:
continue
# Ignore hidden items
if line['hidden'] == '1' or line['shadowHidden'] == '1':
continue
# Skip those that aren't highly voted
votes = int(line['votes'])
if votes < preprocess_args.min_votes:
continue
locked = line['locked'] == '1'
reputation = float(line['reputation'])
# if reputation < preprocess_args.min_reputation:
# continue # TODO add back?
# Problems like mGVn1wCkBrE
# TODO ignore if over max_duration
if line['videoID'] not in db:
db[line['videoID']] = []
db[line['videoID']].append({
'uuid': line['UUID'],
'start': float(line['startTime']),
'end': float(line['endTime']),
'votes': votes,
'locked': locked,
'views': int(line['views']),
'submission_time': float(line['timeSubmitted'])/1e3,
'reputation': reputation,
'category': line['category'],
'action': line['actionType'],
})
# First, remove videos that contain a full-video label
# (may confuse model since disclaimers and such aren't labelled)
# Must do it here before removing duplicate segments
for key in list(db):
if any(x['action'] == 'full' for x in db[key]):
del db[key]
# Remove duplicate sponsor segments by choosing best (most votes)
if not preprocess_args.keep_duplicate_segments:
logger.info('Remove duplicate segments')
for key in db:
db[key] = remove_duplicate_segments(db[key])
# We now remove whole videos from the list
# Helps with obtaining "fully-labelled" videos
min_date = datetime.strptime(preprocess_args.min_date, '%d/%m/%Y')
max_date = datetime.strptime(preprocess_args.max_date, '%d/%m/%Y')
for key in list(db):
if preprocess_args.max_segment_duration >= 0 and any(x['end'] - x['start'] > preprocess_args.max_segment_duration for x in db[key]):
# Remove videos that have at least one segment that is longer than
# the maximum allowed segment duration. This avoids introducing
# segments into training that might contain ignored context (since
# they are too long, so the middle might be normal content)
del db[key]
elif any(datetime.fromtimestamp(x['submission_time']) < min_date for x in db[key]):
# Remove videos where any of its segments were submitted before min_date
# (essentially removes videos uploaded before min_date)
# Prevents issues where some segments of a video are excluded
del db[key]
elif all(datetime.fromtimestamp(x['submission_time']) > max_date for x in db[key]):
# Remove videos where all of its segments were submitted after max_date
# (essentially removes videos uploaded after max_date)
# Allows for segments to be corrected for past videos
del db[key]
elif any(not x['locked'] and x['views'] < preprocess_args.min_views for x in db[key]):
# Remove videos where any of its non-locked segments do not have enough views
# (essentially skips videos that have not been fully watched/reviewed)
# Always include segments locked by VIPs, regardless of view count
del db[key]
logger.info(f'Saved {len(db)} videos')
with open(processed_db_path, 'w') as fp:
json.dump(db, fp)
return db
if preprocess_args.do_process_database:
read_db()
# 'videoID', 'startTime', 'endTime', 'votes', 'locked', 'incorrectVotes', 'UUID',
# 'userID', 'timeSubmitted', 'views', 'category', 'actionType', 'service', 'videoDuration',
# 'hidden', 'reputation', 'shadowHidden', 'hashedVideoID', 'userAgent', 'description'
if preprocess_args.do_transcribe:
logger.info('Collecting videos')
parsed_database = read_db()
# Remove transcripts already processed
finished = set(x.split('.')[0] for x in os.listdir(
'transcripts/auto/') + os.listdir('transcripts/manual/'))
video_ids = list(parsed_database.keys() - finished)
# https://stackoverflow.com/a/63495323
import concurrent
POLL_INTERVAL = 0.1
# Wrap get words function to return video_id after completion
def get_words_wrapper(video_id):
get_words(video_id)
return video_id
logger.info('Setting up ThreadPoolExecutor')
with concurrent.futures.ThreadPoolExecutor(max_workers=preprocess_args.num_jobs) as pool, \
tqdm(total=len(video_ids)) as progress:
all_futures = (pool.submit(get_words_wrapper, video_id)
for video_id in video_ids)
to_process = set(itertools.islice(
all_futures, preprocess_args.num_jobs))
try:
while to_process:
just_finished, to_process = concurrent.futures.wait(
to_process, timeout=POLL_INTERVAL)
to_process |= set(itertools.islice(
all_futures, len(just_finished)))
for d in just_finished:
progress.set_description(f'Processed {d.result()}')
progress.update()
except KeyboardInterrupt:
logger.info(
'Gracefully shutting down: Cancelling unscheduled tasks')
# only futures that are not done will prevent exiting
for future in to_process:
future.cancel()
logger.info('Waiting for in-progress tasks to complete')
concurrent.futures.wait(to_process, timeout=None)
logger.info('Cancellation successful')
final_path = os.path.join(
dataset_args.data_dir, dataset_args.processed_file)
if preprocess_args.do_create:
logger.info('Create final data')
final_data = {}
parsed_database = read_db()
transcribed = set(x.split('.')[0] for x in os.listdir(
'transcripts/auto/') + os.listdir('transcripts/manual/'))
# Only consider videos that have been transcribed already
video_ids = parsed_database.keys() & transcribed
with tqdm(total=len(video_ids)) as progress:
for index, video_id in enumerate(video_ids):
if preprocess_args.max_videos is not None and index >= preprocess_args.max_videos:
break
progress.set_description(f'Processing {video_id}')
progress.update()
video_words = get_words(video_id, process=False)
if not video_words:
continue
final_vid_segs = []
# Only add segments with high enough wps
for seg in parsed_database[video_id]:
segment_words = segment.extract_segment(
video_words, seg['start'], seg['end'])
if len(segment_words) <= 1:
continue # Useless to add segment since no words
# duration = segment.word_end(segment_words[-1]) - segment.word_start(segment_words[0])
duration = seg['end'] - seg['start']
wps = len(segment_words)/duration if duration > 0 else 0
# print(video_id, wps)
if wps < preprocess_args.min_wps:
# Skip sponsor segments without many words
# e.g. music ads with some words on each side
# progress.set_description(f'Skipping bad segment in {video_id} (wps={wps})')
continue
final_vid_segs.append(seg)
if final_vid_segs:
final_data[video_id] = final_vid_segs
# Save data
with open(final_path, 'w') as fp:
json.dump(final_data, fp)
# final_data = preprocess(
# raw_dataset_path, final_path, preprocess_args.min_votes)
# # TODO save metadata in final.json?
elif os.path.exists(final_path):
# Already exists
logging.info(f'{final_path} exists, opening file')
with open(final_path) as fp:
final_data = json.load(fp)
logging.info(f'Found {len(final_data)} videos')
else:
return # Do not continue
# TODO shuffle final_data
# if not os.path.exists(excess_path) or preprocess_args.overwrite
# TODO use overwrite param
positive_file = os.path.join(
dataset_args.data_dir, preprocess_args.positive_file)
negative_file = os.path.join(
dataset_args.data_dir, preprocess_args.negative_file)
if preprocess_args.do_generate:
logger.info('Generating')
# max_videos=preprocess_args.max_videos,
# max_segments=preprocess_args.max_segments,
# , max_videos, max_segments
from model import get_model_tokenizer
model, tokenizer = get_model_tokenizer(model_args, general_args)
# TODO
# count_videos = 0
# count_segments = 0
data = final_data.items()
start_index = preprocess_args.start_index or 0
end_index = (preprocess_args.max_videos or len(data)) + start_index
data = list(itertools.islice(data, start_index, end_index))
write_mode = 'w' # if preprocess_args.overwrite else 'a'
with open(positive_file, write_mode, encoding='utf-8') as positive, \
open(negative_file, write_mode, encoding='utf-8') as negative, \
tqdm(data) as progress:
for offset, (video_id, sponsor_segments) in enumerate(data):
progress.set_description(f'Processing {video_id}')
progress.update()
# Use chunk granularity to improve manual transcripts
words = get_words(video_id, process=False, granularity='chunk')
if not words:
continue
if len(words) <= 1:
continue
segments = segment.generate_labelled_segments(
words, tokenizer, segmentation_args, sponsor_segments)
if not segments:
continue
for seg in segments:
seg_start = segment.word_start(seg[0])
seg_end = segment.word_end(seg[-1])
duration = seg_end - seg_start
wps = len(seg)/duration if duration > 0 else 0
# Ignore segments with "not enough words" in the transcript
# Must do here since this includes non-sponsor segments
if wps < preprocess_args.min_wps:
continue
d = {
# 'video_index': offset + start_index,
'video_id': video_id,
# 'uuid': video_id, # TODO add uuid
'text': ' '.join(x['cleaned'] for x in seg),
'start': seg_start,
'end': seg_end,
}
extracted_segments = extract_sponsors(seg)
if extracted_segments:
extracted_texts = []
for s in extracted_segments:
w = ' '.join(q['cleaned'] for q in s['words'])
category = s['category'].upper()
extracted_texts.append(
f'{START_SEGMENT_TEMPLATE.format(category)} {w} {END_SEGMENT_TEMPLATE.format(category)}'
)
d['extracted'] = f' {CustomTokens.BETWEEN_SEGMENTS.value} '.join(
extracted_texts)
print(json.dumps(d), file=positive)
else:
d['extracted'] = CustomTokens.NO_SEGMENT.value
print(json.dumps(d), file=negative)
if preprocess_args.do_split:
logger.info('Splitting')
logger.info('Read files')
with open(positive_file, encoding='utf-8') as positive:
sponsors = positive.readlines()
with open(negative_file, encoding='utf-8') as negative:
non_sponsors = negative.readlines()
logger.info('Shuffle')
random.shuffle(sponsors)
random.shuffle(non_sponsors)
logger.info('Calculate ratios')
# Ensure correct ratio of positive to negative segments
percentage_negative = 1 - preprocess_args.percentage_positive
if preprocess_args.percentage_positive * len(sponsors) > len(non_sponsors):
# Negative is limiting
z = int(preprocess_args.percentage_positive /
percentage_negative * len(non_sponsors))
# excess = sponsors[z:]
sponsors = sponsors[:z]
else:
# Positive is limiting
z = int(percentage_negative /
preprocess_args.percentage_positive * len(sponsors))
# excess = non_sponsors[z:]
non_sponsors = non_sponsors[:z]
logger.info('Join')
all_labelled_segments = sponsors + non_sponsors
random.shuffle(all_labelled_segments)
# TODO split based on video ids
logger.info('Split')
ratios = [preprocess_args.train_split,
preprocess_args.test_split,
preprocess_args.valid_split]
train_data, test_data, valid_data = split(
all_labelled_segments, ratios)
splits = {
dataset_args.train_file: train_data,
dataset_args.test_file: test_data,
dataset_args.validation_file: valid_data
}
# Output training, testing and validation data
for name, items in splits.items():
outfile = os.path.join(dataset_args.data_dir, name)
with open(outfile, 'w', encoding='utf-8') as fp:
fp.writelines(items)
classifier_splits = {
dataset_args.c_train_file: train_data,
dataset_args.c_test_file: test_data,
dataset_args.c_validation_file: valid_data
}
none_category = CATEGORIES.index(None)
# Output training, testing and validation data
for name, items in classifier_splits.items():
outfile = os.path.join(dataset_args.data_dir, name)
with open(outfile, 'w', encoding='utf-8') as fp:
for item in items:
parsed_item = json.loads(item) # TODO add uuid
matches = extract_sponsor_matches_from_text(
parsed_item['extracted'])
if matches:
for match in matches:
print(json.dumps({
'text': match['text'],
'label': CATEGORIES.index(match['category'])
}), file=fp)
else:
print(json.dumps({
'text': parsed_item['text'],
'label': none_category
}), file=fp)
logger.info('Write')
# Save excess items
# excess_path = os.path.join(
# dataset_args.data_dir, dataset_args.excess_file)
# if not os.path.exists(excess_path) or preprocess_args.overwrite:
# with open(excess_path, 'w', encoding='utf-8') as fp:
# fp.writelines(excess)
# else:
# logger.info(f'Skipping {dataset_args.excess_file}')
logger.info(
f'Finished splitting: {len(sponsors)} sponsors, {len(non_sponsors)} non sponsors')
def split(arr, ratios):
"""Split array according to ratios. Sum of ratios should be <= 1"""
to_return = []
cumulative_sum = 0
for r in ratios:
current = cumulative_sum
cumulative_sum += r * len(arr)
to_return.append(arr[int(current):int(cumulative_sum)])
return to_return
if __name__ == '__main__':
main()
|