Spaces:
Sleeping
Sleeping
from transformers import TextClassificationPipeline | |
import preprocess | |
import segment | |
class SponsorBlockClassificationPipeline(TextClassificationPipeline): | |
def __init__(self, model, tokenizer): | |
device = next(model.parameters()).device.index | |
if device is None: | |
device = -1 | |
super().__init__(model=model, tokenizer=tokenizer, | |
return_all_scores=True, truncation=True, device=device) | |
def preprocess(self, data, **tokenizer_kwargs): | |
# TODO add support for lists | |
texts = [] | |
if not isinstance(data, list): | |
data = [data] | |
for d in data: | |
if isinstance(d, dict): # Otherwise, get data from transcript | |
words = preprocess.get_words(d['video_id']) | |
segment_words = segment.extract_segment( | |
words, d['start'], d['end']) | |
text = preprocess.clean_text( | |
' '.join(x['text'] for x in segment_words)) | |
texts.append(text) | |
elif isinstance(d, str): # If string, assume this is what user wants to classify | |
texts.append(d) | |
else: | |
raise ValueError(f'Invalid input type: "{type(d)}"') | |
return self.tokenizer( | |
texts, return_tensors=self.framework, **tokenizer_kwargs) | |
def main(): | |
pass | |
if __name__ == '__main__': | |
main() | |