PromoDetect / src /model.py
Shad0ws's picture
Upload 21 files
b7b7347
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, TrainingArguments
from shared import CustomTokens, GeneralArguments
from dataclasses import dataclass, field
from typing import Optional, Union
import torch
import classify
import base64
import re
import requests
import json
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
# Public innertube key (b64 encoded so that it is not incorrectly flagged)
INNERTUBE_KEY = base64.b64decode(
b'QUl6YVN5QU9fRkoyU2xxVThRNFNURUhMR0NpbHdfWTlfMTFxY1c4').decode()
YT_CONTEXT = {
'client': {
'userAgent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36,gzip(gfe)',
'clientName': 'WEB',
'clientVersion': '2.20211221.00.00',
}
}
_YT_INITIAL_DATA_RE = r'(?:window\s*\[\s*["\']ytInitialData["\']\s*\]|ytInitialData)\s*=\s*({.+?})\s*;\s*(?:var\s+meta|</script|\n)'
def get_all_channel_vids(channel_id):
continuation = None
while True:
if continuation is None:
params = {'list': channel_id.replace('UC', 'UU', 1)}
response = requests.get(
'https://www.youtube.com/playlist', params=params)
items = json.loads(re.search(_YT_INITIAL_DATA_RE, response.text).group(1))['contents']['twoColumnBrowseResultsRenderer']['tabs'][0]['tabRenderer']['content'][
'sectionListRenderer']['contents'][0]['itemSectionRenderer']['contents'][0]['playlistVideoListRenderer']['contents']
else:
params = {'key': INNERTUBE_KEY}
data = {
'context': YT_CONTEXT,
'continuation': continuation
}
response = requests.post(
'https://www.youtube.com/youtubei/v1/browse', params=params, json=data)
items = response.json()[
'onResponseReceivedActions'][0]['appendContinuationItemsAction']['continuationItems']
new_token = None
for vid in items:
info = vid.get('playlistVideoRenderer')
if info:
yield info['videoId']
continue
info = vid.get('continuationItemRenderer')
if info:
new_token = info['continuationEndpoint']['continuationCommand']['token']
if new_token is None:
break
continuation = new_token
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default=None,
metadata={
'help': 'Path to pretrained model or model identifier from huggingface.co/models'
}
)
cache_dir: Optional[str] = field(
default='models',
metadata={
'help': 'Where to store the pretrained models downloaded from huggingface.co'
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'
},
)
model_revision: str = field(
default='main',
metadata={
'help': 'The specific model version to use (can be a branch name, tag name or commit id).'
},
)
use_auth_token: bool = field(
default=False,
metadata={
'help': 'Will use the token generated when running `transformers-cli login` (necessary to use this script '
'with private models).'
},
)
import itertools
from errors import InferenceException, ModelLoadError
@dataclass
class InferenceArguments(ModelArguments):
model_name_or_path: str = field(
default='Xenova/sponsorblock-small',
metadata={
'help': 'Path to pretrained model used for prediction'
}
)
classifier_model_name_or_path: str = field(
default='EColi/SB_Classifier',
metadata={
'help': 'Use a pretrained classifier'
}
)
max_videos: Optional[int] = field(
default=None,
metadata={
'help': 'The number of videos to test on'
}
)
start_index: int = field(default=None, metadata={
'help': 'Video to start the evaluation at.'})
channel_id: Optional[str] = field(
default=None,
metadata={
'help': 'Used to evaluate a channel'
}
)
video_ids: str = field(
default_factory=lambda: [],
metadata={
'nargs': '+'
}
)
output_as_json: bool = field(default=False, metadata={
'help': 'Output evaluations as JSON'})
min_probability: float = field(
default=0.5, metadata={'help': 'Remove all predictions whose classification probability is below this threshold.'})
def __post_init__(self):
self.video_ids = list(map(str.strip, self.video_ids))
if any(len(video_id) != 11 for video_id in self.video_ids):
raise InferenceException('Invalid video IDs (length not 11)')
if self.channel_id is not None:
start = self.start_index or 0
end = None if self.max_videos is None else start + self.max_videos
channel_video_ids = list(itertools.islice(get_all_channel_vids(
self.channel_id), start, end))
logger.info(
f'Found {len(channel_video_ids)} for channel {self.channel_id}')
self.video_ids += channel_video_ids
def get_model_tokenizer_classifier(inference_args: InferenceArguments, general_args: GeneralArguments):
original_path = inference_args.model_name_or_path
# Load main model and tokenizer
model, tokenizer = get_model_tokenizer(inference_args, general_args)
# Load classifier
inference_args.model_name_or_path = inference_args.classifier_model_name_or_path
classifier_model, classifier_tokenizer = get_model_tokenizer(
inference_args, general_args, model_type='classifier')
classifier = classify.SponsorBlockClassificationPipeline(
classifier_model, classifier_tokenizer)
# Reset to original model_name_or_path
inference_args.model_name_or_path = original_path
return model, tokenizer, classifier
def get_model_tokenizer(model_args: ModelArguments, general_args: Union[GeneralArguments, TrainingArguments] = None, config_args=None, model_type='seq2seq'):
if model_args.model_name_or_path is None:
raise ModelLoadError('Must specify --model_name_or_path')
if config_args is None:
config_args = {}
use_auth_token = True if model_args.use_auth_token else None
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=use_auth_token,
**config_args
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=use_auth_token,
)
model_type = AutoModelForSeq2SeqLM if model_type == 'seq2seq' else AutoModelForSequenceClassification
model = model_type.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=use_auth_token,
)
# Add custom tokens
CustomTokens.add_custom_tokens(tokenizer)
model.resize_token_embeddings(len(tokenizer))
# Potentially move model to gpu
if general_args is not None and not general_args.no_cuda:
model.to('cuda' if torch.cuda.is_available() else 'cpu')
return model, tokenizer