Spaces:
Sleeping
Sleeping
from shared import ( | |
CustomTokens, | |
DatasetArguments, | |
prepare_datasets, | |
load_datasets, | |
CustomTrainingArguments, | |
get_last_checkpoint, | |
train_from_checkpoint | |
) | |
from model import ModelArguments | |
import transformers | |
import logging | |
import os | |
import sys | |
from datasets import utils as d_utils | |
from transformers import ( | |
DataCollatorForSeq2Seq, | |
HfArgumentParser, | |
Seq2SeqTrainer, | |
Seq2SeqTrainingArguments, | |
) | |
from transformers.utils import check_min_version | |
from transformers.utils.versions import require_version | |
from dataclasses import dataclass | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version('4.17.0') | |
require_version('datasets>=1.8.0', | |
'To fix: pip install -r requirements.txt') | |
os.environ['WANDB_DISABLED'] = 'true' | |
logging.basicConfig() | |
logger = logging.getLogger(__name__) | |
# Setup logging | |
logging.basicConfig( | |
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
datefmt='%m/%d/%Y %H:%M:%S', | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
class Seq2SeqTrainingArguments(CustomTrainingArguments, Seq2SeqTrainingArguments): | |
pass | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
hf_parser = HfArgumentParser(( | |
ModelArguments, | |
DatasetArguments, | |
Seq2SeqTrainingArguments | |
)) | |
model_args, dataset_args, training_args = hf_parser.parse_args_into_dataclasses() | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
d_utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Set seed before initializing model. | |
# set_seed(training_args.seed) | |
# Log on each process the small summary: | |
logger.warning( | |
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' | |
+ f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}' | |
) | |
logger.info(f'Training/evaluation parameters {training_args}') | |
# FP16 https://github.com/huggingface/transformers/issues/9295 | |
# Works: | |
# https://huggingface.co/docs/transformers/model_doc/t5v1.1 | |
# google/t5-v1_1-small | |
# google/t5-v1_1-base | |
# google/t5-v1_1-large | |
# google/t5-v1_1-xl | |
# google/t5-v1_1-xxl | |
# https://huggingface.co/docs/transformers/model_doc/t5 | |
# t5-small | |
# t5-base | |
# t5-large | |
# t5-3b | |
# t5-11b | |
# allenai/led-base-16384 - https://github.com/huggingface/transformers/issues/9810 | |
# Further work: | |
# Multilingual- https://huggingface.co/docs/transformers/model_doc/mt5 | |
# In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
# download the dataset. | |
raw_datasets = load_datasets(dataset_args) | |
# , cache_dir=model_args.cache_dir | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# Detecting last checkpoint. | |
last_checkpoint = get_last_checkpoint(training_args) | |
from model import get_model_tokenizer | |
model, tokenizer = get_model_tokenizer(model_args, training_args) | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
prefix = CustomTokens.EXTRACT_SEGMENTS_PREFIX.value | |
PAD_TOKEN_REPLACE_ID = -100 | |
# https://github.com/huggingface/transformers/issues/5204 | |
def preprocess_function(examples): | |
inputs = examples['text'] | |
targets = examples['extracted'] | |
inputs = [prefix + inp for inp in inputs] | |
model_inputs = tokenizer(inputs, truncation=True) | |
# Setup the tokenizer for targets | |
with tokenizer.as_target_tokenizer(): | |
labels = tokenizer(targets, truncation=True) | |
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 | |
# when we want to ignore padding in the loss. | |
model_inputs['labels'] = [ | |
[(l if l != tokenizer.pad_token_id else PAD_TOKEN_REPLACE_ID) | |
for l in label] | |
for label in labels['input_ids'] | |
] | |
return model_inputs | |
train_dataset, eval_dataset, predict_dataset = prepare_datasets( | |
raw_datasets, dataset_args, training_args, preprocess_function) | |
# Data collator | |
data_collator = DataCollatorForSeq2Seq( | |
tokenizer, | |
model=model, | |
label_pad_token_id=PAD_TOKEN_REPLACE_ID, | |
pad_to_multiple_of=8 if training_args.fp16 else None, | |
) | |
# Done processing datasets | |
# Initialize our Trainer | |
trainer = Seq2SeqTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
) | |
# Training | |
train_result = train_from_checkpoint( | |
trainer, last_checkpoint, training_args) | |
metrics = train_result.metrics | |
max_train_samples = training_args.max_train_samples or len( | |
train_dataset) | |
metrics['train_samples'] = min(max_train_samples, len(train_dataset)) | |
trainer.log_metrics('train', metrics) | |
trainer.save_metrics('train', metrics) | |
trainer.save_state() | |
kwargs = {'finetuned_from': model_args.model_name_or_path, | |
'tasks': 'summarization'} | |
if training_args.push_to_hub: | |
trainer.push_to_hub(**kwargs) | |
else: | |
trainer.create_model_card(**kwargs) | |
if __name__ == '__main__': | |
main() | |