Spaces:
Sleeping
Sleeping
File size: 11,022 Bytes
f208b6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# from __future__ import annotations
import gradio as gr
from huggingface_hub import from_pretrained_fastai
import os
from typing import Iterable
# from gradio.themes.base import Base
# from gradio.themes.utils import colors, fonts, sizes
os.environ["HF_ENDPOINT"] = "https://huggingface.co"
materials_model = from_pretrained_fastai("pyesonekyaw/recycletree_materials")
paper_model = from_pretrained_fastai("pyesonekyaw/recycletree_paper")
plastic_model = from_pretrained_fastai("pyesonekyaw/recycletree_plastic")
metal_model = from_pretrained_fastai("pyesonekyaw/recycletree_metal")
others_model = from_pretrained_fastai("pyesonekyaw/recycletree_others")
glass_model = from_pretrained_fastai("pyesonekyaw/recycletree_glass")
examples = ["Examples/1.jpg", "Examples/2.jpg",
"Examples/3.jpg", "Examples/4.jpg", "Examples/5.jpg"]
material_names = ['Glass', 'Metal', 'Others', 'Paper', 'Plastic']
plastic_names = ['CD Disk', 'Straw', 'Plastic Bag', 'Clothes Hanger', 'Plastic Container or Bottle',
'Disposable Cutlery', 'Plastic Packaging', 'Plastic Packaging With Foil', 'Styrofoam']
paper_names = ['Beverage Carton', 'Cardboard', 'Chopsticks', 'Disposables', 'Paper Bag', 'Paper Packaging',
'Paper Product', 'Receipt', 'Paper Roll', 'Paper Sheet', 'Tissue Box', 'Tissue Paper']
glass_names = ['Ceramic', 'Glassware', 'Lightbulb']
other_names = ['Battery', 'Electronic Waste', 'Stationery']
metal_names = ['Aerosol Can', 'Aluminium Foil or Tray', 'Metal Can or Container']
material_num_name_dict = {
"metal": "Metal",
"glass": "Glass",
"paper": "Paper",
"plastic": "Plastic",
"others": "Others",
}
plastic_item_num_dict = {
"CD Disk": ["Yes", "Nil"],
"Straw": ["No, dispose as general waste","Nil"],
"Plastic Bag": ["Yes, if they are not oxo- and bio- degradable bags", "Contaminated with food waste/liquid waste/other forms of waste. Please refer to RecycleHowAh for more information"],
"Clothes Hanger": ["Yes", "Made up of more than one plastic, if unsure, just dispose as normal waste "],
"Plastic Container or Bottle": ["Yes", "When they are not emptied or not rinsed "],
"Disposable Cutlery": ["No, dispose as general waste", "Nil"],
"Plastic Packaging": ["Yes, for things like bubble wrap and egg tray but no if directly enclosing food like cling wrap", "Contaminated with food contents "],
"Plastic Packaging With Foil": ["No","Nil"],
"Styrofoam": ["No, dispose as general waste","Nil"]
}
glass_item_num_dict = {
"Ceramic": ["No, donate if can be reused", "Nil"],
"Glassware": ["Yes","If there is liquid/solid residue inside the glassware "],
"Lightbulb": ["Could be recycled at specific collection points which can be found on onemap.sg, under Lighting waste collection points", "Nil"]
}
metal_item_num_dict = {
"Aerosol Can": ["Yes","If there are any remaining contents in the can"],
"Aluminium Foil or Tray": ["Yes","If there is any residue "],
"Metal Can or Container": ["Yes","If there is any residue "]
}
others_item_num_dict = {
"Battery": ["Battery","No, rechargeable batteries can be recycled through specific collection points (e-waste collection)", "Nil"],
"Electronic Waste": ["Electronic Waste","Can be recycled through specific collection points (e-waste collection). Please refer to RecycleHowAh for more information"],
"Stationery": ["Stationery","No, donate if can be reused"]
}
paper_item_num_dict = {
"Beverage Carton": ["Yes, rinsed and flattened","Nil"],
"Cardboard": ["Yes","Remains of other materials such as tape, contaminated with other waste"],
"Chopsticks": ["No, dispose as general waste ",],
"Disposables": ["No, dispose as general waste ",],
"Paper Bag": ["Yes","Contaminated with food waste or other waste "],
"Paper Packaging": ["Yes","Made up of more than one material or contaminated with food waste"],
"Paper Product": ["Yes","Contaminated with other waste"],
"Receipt": ["Yes","Contaminated with other waste"],
"Paper Roll": ["Yes","Contaminated with other waste"],
"Paper Sheet": ["Yes","Contaminated with other waste "],
"Tissue Box": ["Yes","Plastic liners not removed or contaminated with other waste "],
"Tissue Paper": ["No, dispose as general waste","Nil"]
}
# class Seafoam(Base):
# def __init__(
# self,
# *,
# primary_hue: colors.Color | str = colors.emerald,
# secondary_hue: colors.Color | str = colors.teal,
# neutral_hue: colors.Color | str = colors.teal,
# spacing_size: sizes.Size | str = sizes.spacing_md,
# radius_size: sizes.Size | str = sizes.radius_md,
# text_size: sizes.Size | str = sizes.text_lg,
# font: fonts.Font
# | str
# | Iterable[fonts.Font | str] = (
# fonts.GoogleFont("Quicksand"),
# "ui-sans-serif",
# "sans-serif",
# ),
# font_mono: fonts.Font
# | str
# | Iterable[fonts.Font | str] = (
# fonts.GoogleFont("IBM Plex Mono"),
# "ui-monospace",
# "monospace",
# ),
# ):
# super().__init__(
# primary_hue=primary_hue,
# secondary_hue=secondary_hue,
# neutral_hue=neutral_hue,
# spacing_size=spacing_size,
# radius_size=radius_size,
# text_size=text_size,
# font=font,
# font_mono=font_mono,
# )
# super().set(
# body_background_fill="linear-gradient(45deg, *primary_200, *primary_200 10px, *primary_50 10px, *primary_50 20px)",
# body_background_fill_dark="linear-gradient(45deg, *primary_200, *primary_200 10px, *primary_50 10px, *primary_50 20px)",
# stat_background_fill_dark="linear-gradient(to right, *primary_400, *primary_200)",
# error_background_fill_dark=f"linear-gradient(to right, {colors.red.c100}, *background_fill_secondary)",
# button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
# button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
# button_primary_background_fill_hover_dark="linear-gradient(90deg, *primary_200, *secondary_300)",
# button_primary_text_color="white",
# button_primary_background_fill_dark="linear-gradient(90deg, *primary_300, *secondary_400)",
# slider_color="*secondary_300",
# slider_color_dark="*secondary_300",
# block_title_text_weight="600",
# block_border_width="3px",
# block_shadow="*shadow_drop_lg",
# button_shadow="*shadow_drop_lg",
# button_large_padding="32px",
# )
# for k in list(self.__dict__.keys()):
# if '_dark' in k:
# setattr(self,k,None)
# seafoam = Seafoam()
def predict_image(inp):
"""
Performs inference for a given input image and returns the prediction and CAM image.
"""
try:
material_label, material_label_idx, material_probs = materials_model.predict(inp)
material_preds = {name: prob for name, prob in zip(material_names, material_probs.tolist())}
if material_label == 'paper':
specific_label, specific_label_idx, specific_probs = paper_model.predict(inp)
specific_preds = {name: prob for name, prob in zip(paper_names, specific_probs.tolist())}
specific_label = paper_names[int(specific_label_idx)]
recyclable_qn = paper_item_num_dict[specific_label][0]
recyclable_advice = paper_item_num_dict[specific_label][1]
elif material_label == 'plastic':
specific_label, specific_label_idx, specific_probs = plastic_model.predict(inp)
specific_preds = {name: prob for name, prob in zip(plastic_names, specific_probs.tolist())}
specific_label = plastic_names[int(specific_label_idx)]
recyclable_qn = plastic_item_num_dict[specific_label][0]
recyclable_advice = plastic_item_num_dict[specific_label][1]
elif material_label == 'glass':
specific_label, specific_label_idx, specific_probs = glass_model.predict(inp)
specific_preds = {name: prob for name, prob in zip(glass_names, specific_probs.tolist())}
specific_label = glass_names[int(specific_label_idx)]
recyclable_qn = glass_item_num_dict[specific_label][0]
recyclable_advice = glass_item_num_dict[specific_label][1]
elif material_label == 'metal':
specific_label, specific_label_idx, specific_probs = metal_model.predict(inp)
specific_preds = {name: prob for name, prob in zip(metal_names, specific_probs.tolist())}
specific_label = metal_names[int(specific_label_idx)]
recyclable_qn = metal_item_num_dict[specific_label][0]
recyclable_advice = metal_item_num_dict[specific_label][1]
elif material_label == 'others':
specific_label, specific_label_idx, specific_probs = others_model.predict(inp)
specific_preds = {name: prob for name, prob in zip(other_names, specific_probs.tolist())}
specific_label = other_names[int(specific_label_idx)]
recyclable_qn = others_item_num_dict[specific_label][0]
recyclable_advice = others_item_num_dict[specific_label][1]
return material_preds, specific_preds, recyclable_qn, recyclable_advice
except:
raise Exception("Invalid file format! Please only upload .jpg or .png files!")
with gr.Blocks(title="Trash Classification", css="#custom_header {min-height: 3rem} #custom_title {min-height: 3rem; text-align: center}") as demo:#, theme=seafoam) as demo:
gr.Markdown("# Recyclable Detector- Classification of trash and recyclables", elem_id="custom_title")
gr.Markdown("Gradio Inference interface", elem_id="custom_title")
with gr.Column():
with gr.Column():
with gr.Box():
gr.Markdown("## Inputs", elem_id="custom_header")
input_image = gr.Image(label="Input Image")
input_image.style(height=240)
btn = gr.Button(value="Submit")
btn.style(full_width=True)
with gr.Column():
with gr.Box():
gr.Markdown("## Outputs", elem_id="custom_header")
recycling_qn = gr.outputs.Textbox(label="Is this recyclable?")
recycling_advice = gr.outputs.Textbox(label="It is not recyclable when:")
with gr.Row():
material_probs = gr.outputs.Label(label="Material Prediction")
item_probs = gr.outputs.Label(label="Item Prediction")
gr.Examples(
examples=examples,
inputs=input_image,
fn=predict_image,
cache_examples=False,
)
btn.click(predict_image, inputs=[input_image],
outputs=[material_probs, item_probs, recycling_qn, recycling_advice])
if __name__ == "__main__":
demo.launch(show_error=True)
|