File size: 6,803 Bytes
0b5f327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import os
from collections import OrderedDict
import random
from . import model_utils


class BaseModel:
    """docstring for BaseModel"""
    def __init__(self):
        super(BaseModel, self).__init__()
        self.name = "Base"

    def initialize(self, opt):
        self.opt = opt
        self.gpu_ids = self.opt.gpu_ids
        self.device = torch.device('cuda:%d' % self.gpu_ids[0] if self.gpu_ids else 'cpu')
        self.is_train = self.opt.mode == "train"
        # inherit to define network model 
        self.models_name = []
        
    def setup(self):
        # print("%s with Model [%s]" % (self.opt.mode.capitalize(), self.name))
        if self.is_train:
            self.set_train()
            # define loss function
            self.criterionGAN = model_utils.GANLoss(gan_type=self.opt.gan_type).to(self.device)
            self.criterionL1 = torch.nn.L1Loss().to(self.device)
            self.criterionMSE = torch.nn.MSELoss().to(self.device)
            self.criterionTV = model_utils.TVLoss().to(self.device)
            torch.nn.DataParallel(self.criterionGAN, self.gpu_ids)
            torch.nn.DataParallel(self.criterionL1, self.gpu_ids)
            torch.nn.DataParallel(self.criterionMSE, self.gpu_ids)
            torch.nn.DataParallel(self.criterionTV, self.gpu_ids)
            # inherit to set up train/val/test status
            self.losses_name = []
            self.optims = []
            self.schedulers = []
        else:
            self.set_eval()

    def set_eval(self):
        print("Set model to Test state.")
        for name in self.models_name:
            if isinstance(name, str):
                net = getattr(self, 'net_' + name)
                if True:
                    net.eval()
                    print("Set net_%s to EVAL." % name)
                else:
                    net.train()
        self.is_train = False

    def set_train(self):
        print("Set model to Train state.")
        for name in self.models_name:
            if isinstance(name, str):
                net = getattr(self, 'net_' + name)
                net.train()
                print("Set net_%s to TRAIN." % name)
        self.is_train = True

    def set_requires_grad(self, parameters, requires_grad=False):
        if not isinstance(parameters, list):
            parameters = [parameters]
        for param in parameters:
            if param is not None:
                param.requires_grad = requires_grad

    def get_latest_visuals(self, visuals_name):
        visual_ret = OrderedDict()
        for name in visuals_name:
            if isinstance(name, str) and hasattr(self, name):
                visual_ret[name] = getattr(self, name)
        return visual_ret

    def get_latest_losses(self, losses_name):
        errors_ret = OrderedDict()
        for name in losses_name:
            if isinstance(name, str):
                cur_loss = float(getattr(self, 'loss_' + name))
                # cur_loss_lambda = 1. if len(losses_name) == 1 else float(getattr(self.opt, 'lambda_' + name))
                # errors_ret[name] = cur_loss * cur_loss_lambda
                errors_ret[name] = cur_loss
        return errors_ret

    def feed_batch(self, batch):
        pass 

    def forward(self):
        pass

    def optimize_paras(self):
        pass

    def update_learning_rate(self):
        for scheduler in self.schedulers:
            scheduler.step()
        lr = self.optims[0].param_groups[0]['lr']
        return lr

    def save_ckpt(self, epoch, models_name):
        for name in models_name:
            if isinstance(name, str):
                save_filename = '%s_net_%s.pth' % (epoch, name)
                save_path = os.path.join(self.opt.ckpt_dir, save_filename)
                net = getattr(self, 'net_' + name)
                # save cpu params, so that it can be used in other GPU settings
                if len(self.gpu_ids) > 0 and torch.cuda.is_available():
                    torch.save(net.module.cpu().state_dict(), save_path)
                    net.to(self.gpu_ids[0])
                    net = torch.nn.DataParallel(net, self.gpu_ids)
                else:
                    torch.save(net.cpu().state_dict(), save_path)

    def load_ckpt(self, epoch, models_name):
        # print(models_name)
        for name in models_name:
            if isinstance(name, str):
                load_filename = '%s_net_%s.pth' % (epoch, name)
                # load_path = os.path.join(self.opt.ckpt_dir, load_filename)
                # assert os.path.isfile(load_path), "File '%s' does not exist." % load_path
                
                # pretrained_state_dict = torch.load(load_path, map_location=str(self.device))
                pretrained_state_dict = torch.load('checkpoints/30_net_gen.pth', map_location=str('cuda:0'))
                if hasattr(pretrained_state_dict, '_metadata'):
                    del pretrained_state_dict._metadata

                net = getattr(self, 'net_' + name)
                if isinstance(net, torch.nn.DataParallel):
                    net = net.module
                # load only existing keys
                pretrained_dict = {k: v for k, v in pretrained_state_dict.items() if k in net.state_dict()}
                # for k, v in pretrained_state_dict.items():
                #     print(k)
                # assert False
                net.load_state_dict(pretrained_dict)
                print("[Info] Successfully load trained weights for net_%s." % name)

    def clean_ckpt(self, epoch, models_name):
        for name in models_name:
            if isinstance(name, str):
                load_filename = '%s_net_%s.pth' % (epoch, name)
                load_path = os.path.join(self.opt.ckpt_dir, load_filename)
                if os.path.isfile(load_path):
                    os.remove(load_path)

    def gradient_penalty(self, input_img, generate_img):
        # interpolate sample
        alpha = torch.rand(input_img.size(0), 1, 1, 1).to(self.device)
        inter_img = (alpha * input_img.data + (1 - alpha) * generate_img.data).requires_grad_(True)
        inter_img_prob, _ = self.net_dis(inter_img)

        # computer gradient penalty: x: inter_img, y: inter_img_prob
        # (L2_norm(dy/dx) - 1)**2
        dydx = torch.autograd.grad(outputs=inter_img_prob,
                                   inputs=inter_img,
                                   grad_outputs=torch.ones(inter_img_prob.size()).to(self.device),
                                   retain_graph=True,
                                   create_graph=True,
                                   only_inputs=True)[0]
        dydx = dydx.view(dydx.size(0), -1)
        dydx_l2norm = torch.sqrt(torch.sum(dydx ** 2, dim=1))
        return torch.mean((dydx_l2norm - 1) ** 2)