File size: 6,390 Bytes
04a4a6b 0a3569d 9c68243 04a4a6b 9c68243 04a4a6b 9c68243 04a4a6b 9c68243 04a4a6b 9c68243 04a4a6b 9c68243 04a4a6b 9c68243 04a4a6b 9c68243 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
from imutils import perspective
from scipy.spatial import distance as dist
model=tf.keras.models.load_model("dental_xray_seg.h5")
st.header("Segmentation of Teeth in Panoramic X-ray Image")
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png"]
def load_image(image_file):
img = Image.open(image_file)
return img
def convert_one_channel(img):
#some images have 3 channels , although they are grayscale image
if len(img.shape)>2:
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img
else:
return img
def convert_rgb(img):
#some images have 3 channels , although they are grayscale image
if len(img.shape)==2:
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
return img
else:
return img
def midpoint(ptA, ptB):
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
def CCA_Analysis(orig_image,predict_image,erode_iteration,open_iteration):
kernel1 =( np.ones((5,5), dtype=np.float32))
kernel_sharpening = np.array([[-1,-1,-1],
[-1,9,-1],
[-1,-1,-1]])
image = predict_image
image2 =orig_image
image=cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel1,iterations=open_iteration )
image = cv2.filter2D(image, -1, kernel_sharpening)
image=cv2.erode(image,kernel1,iterations =erode_iteration)
image=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
labels=cv2.connectedComponents(thresh,connectivity=8)[1]
a=np.unique(labels)
count2=0
for label in a:
if label == 0:
continue
# Create a mask
mask = np.zeros(thresh.shape, dtype="uint8")
mask[labels == label] = 255
# Find contours and determine contour area
cnts,hieararch = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0]
c_area = cv2.contourArea(cnts)
# threshhold for tooth count
if c_area>1000:
count2+=1
(x,y),radius = cv2.minEnclosingCircle(cnts)
rect = cv2.minAreaRect(cnts)
box = cv2.boxPoints(rect)
box = np.array(box, dtype="int")
box = perspective.order_points(box)
color1 = (list(np.random.choice(range(150), size=3)))
color =[int(color1[0]), int(color1[1]), int(color1[2])]
cv2.drawContours(image2,[box.astype("int")],0,color,2)
(tl,tr,br,bl)=box
(tltrX,tltrY)=midpoint(tl,tr)
(blbrX,blbrY)=midpoint(bl,br)
# compute the midpoint between the top-left and top-right points,
# followed by the midpoint between the top-righ and bottom-right
(tlblX,tlblY)=midpoint(tl,bl)
(trbrX,trbrY)=midpoint(tr,br)
# draw the midpoints on the image
cv2.circle(image2, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
cv2.circle(image2, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
cv2.circle(image2, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
cv2.circle(image2, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
cv2.line(image2, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),color, 2)
cv2.line(image2, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),color, 2)
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
pixelsPerMetric=1
dimA = dA * pixelsPerMetric
dimB = dB *pixelsPerMetric
cv2.putText(image2, "{:.1f}pixel".format(dimA),(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
cv2.putText(image2, "{:.1f}pixel".format(dimB),(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
cv2.putText(image2, "{:.1f}".format(label),(int(tltrX - 35), int(tltrY - 5)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2)
teeth_count=count2
return image2,teeth_count
st.subheader("Upload Dental Panoramic X-ray Image")
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
col1, col2, col3, col4 = st.columns(4)
with col1:
ex=load_image(examples[0])
st.image(ex,width=200)
if st.button('Example 1'):
image_file=examples[0]
with col2:
ex1=load_image(examples[1])
st.image(ex1,width=200)
if st.button('Example 2'):
image_file=examples[1]
with col3:
ex2=load_image(examples[2])
st.image(ex2,width=200)
if st.button('Example 3'):
image_file=examples[2]
with col4:
ex2=load_image(examples[3])
st.image(ex2,width=200)
if st.button('Example 4'):
image_file=examples[3]
if image_file is not None:
image=cv2.imread(image_file)
st.text("Making A Prediction ....")
st.image(img,width=1100)
img=np.asarray(image)
img_cv=convert_one_channel(img)
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
img_cv=np.float32(img_cv/255)
img_cv=np.reshape(img_cv,(1,512,512,1))
prediction=model.predict(img_cv)
predicted=prediction[0]
predicted_rgb = np.expand_dims(predicted, axis=-1)
plt.imsave("predict.png",predicted_rgb)
predict1 = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
mask = np.uint8(predict1 * 255)
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img = cv2.drawContours(img, cnts, -1, (255, 0, 0), 2)
if img is not None :
st.subheader("Predicted Image")
st.write(img.shape)
st.image(img,width=1100)
if image.shape[1] < 3000:
image = cv2.resize(image,(3100,1150),interpolation=cv2.INTER_LANCZOS4)
predicted=cv2.imread("predict.png")
predicted = cv2.resize(predicted, (image.shape[1],image.shape[0]), interpolation=cv2.INTER_LANCZOS4)
cca_result,teeth_count=CCA_Analysis(image,predicted,3,2)
if cca_result is not None :
st.subheader("Predicted Image")
st.write(cca_result.shape)
st.image(cca_result,width=1100)
st.text(teeth_count,"Teeth Count")
st.text("DONE ! ....")
|