ddovidovich
Update app.py
0a3569d
raw
history blame
3.91 kB
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
model=tf.keras.models.load_model("dental_xray_seg.h5")
st.header("Segmentation of Teeth in Panoramic X-ray Image")
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png","teeth_05.png"]
def load_image(image_file):
img = Image.open(image_file)
return img
def convert_one_channel(img):
#some images have 3 channels , although they are grayscale image
if len(img.shape)>2:
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img
else:
return img
def convert_rgb(img):
#some images have 3 channels , although they are grayscale image
if len(img.shape)==2:
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
return img
else:
return img
st.subheader("Upload Dental Panoramic X-ray Image Image")
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
ex=load_image(examples[0])
st.image(ex,width=200)
if st.button('Example 1'):
image_file=examples[0]
with col2:
ex1=load_image(examples[1])
st.image(ex1,width=200)
if st.button('Example 2'):
image_file=examples[1]
with col3:
ex2=load_image(examples[2])
st.image(ex2,width=200)
if st.button('Example 3'):
image_file=examples[2]
with col4:
ex2=load_image(examples[3])
st.image(ex2,width=200)
if st.button('Example 4'):
image_file=examples[3]
with col5:
ex2=load_image(examples[4])
st.image(ex2,width=200)
if st.button('Example 5'):
image_file=examples[4]
if image_file is not None:
img=load_image(image_file)
st.text("Making A Prediction ....")
st.image(img,width=850)
img=np.asarray(img)
img_cv=convert_one_channel(img)
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
img_cv=np.float32(img_cv/255)
img_cv=np.reshape(img_cv,(1,512,512,1))
prediction=model.predict(img_cv)
predicted=prediction[0]
predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
mask=np.uint8(predicted*255)#
_, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
kernel =( np.ones((5,5), dtype=np.float32))
mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 )
mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 )
cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
output = cv2.drawContours(convert_rgb(img), cnts, -1, (255, 0, 0) , 3)
if output is not None :
st.subheader("Predicted Image")
st.write(output.shape)
st.image(output,width=850)
st.text("DONE ! ....")
if image_file is not None:
img=load_image(image_file)
st.text("Making A Prediction ....")
st.image(img,width=850)
img=np.asarray(img)
img_cv=convert_one_channel(img)
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
img_cv=np.float32(img_cv/255)
img_cv=np.reshape(img_cv,(1,512,512,1))
predict_img=model.predict(img_cv)
# predict=predict_img[1,:,:,0]
plt.imsave("/content/predict.png",predict_img)
## Plotting - Пример результата
img = cv2.imread(image_file)
predict1 = cv2.resize(predict, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
mask = np.uint8(predict1 * 255)
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY)
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img = cv2.drawContours(img, cnts, -1, (255, 0, 0), 2)
cv2_imshow(img)