import streamlit as st import tensorflow as tf from PIL import Image import numpy as np import cv2 import matplotlib.pyplot as plt model=tf.keras.models.load_model("dental_xray_seg.h5") st.header("Segmentation of Teeth in Panoramic X-ray Image") examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png","teeth_05.png"] def load_image(image_file): img = Image.open(image_file) return img def convert_one_channel(img): #some images have 3 channels , although they are grayscale image if len(img.shape)>2: img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return img else: return img def convert_rgb(img): #some images have 3 channels , although they are grayscale image if len(img.shape)==2: img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) return img else: return img st.subheader("Upload Dental Panoramic X-ray Image Image") image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"]) col1, col2, col3, col4, col5 = st.columns(5) with col1: ex=load_image(examples[0]) st.image(ex,width=200) if st.button('Example 1'): image_file=examples[0] with col2: ex1=load_image(examples[1]) st.image(ex1,width=200) if st.button('Example 2'): image_file=examples[1] with col3: ex2=load_image(examples[2]) st.image(ex2,width=200) if st.button('Example 3'): image_file=examples[2] with col4: ex2=load_image(examples[3]) st.image(ex2,width=200) if st.button('Example 4'): image_file=examples[3] with col5: ex2=load_image(examples[4]) st.image(ex2,width=200) if st.button('Example 5'): image_file=examples[4] if image_file is not None: img=load_image(image_file) st.text("Making A Prediction ....") st.image(img,width=850) img=np.asarray(img) img_cv=convert_one_channel(img) img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4) img_cv=np.float32(img_cv/255) img_cv=np.reshape(img_cv,(1,512,512,1)) prediction=model.predict(img_cv) predicted=prediction[0] predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4) mask=np.uint8(predicted*255)# _, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU) kernel =( np.ones((5,5), dtype=np.float32)) mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 ) mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 ) cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) output = cv2.drawContours(convert_rgb(img), cnts, -1, (255, 0, 0) , 3) if output is not None : st.subheader("Predicted Image") st.write(output.shape) st.image(output,width=850) st.text("DONE ! ....") if image_file is not None: img=load_image(image_file) st.text("Making A Prediction ....") st.image(img,width=850) img=np.asarray(img) img_cv=convert_one_channel(img) img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4) img_cv=np.float32(img_cv/255) img_cv=np.reshape(img_cv,(1,512,512,1)) predict_img=model.predict(img_cv) # predict=predict_img[1,:,:,0] plt.imsave("/content/predict.png",predict_img) ## Plotting - Пример результата img = cv2.imread(image_file) predict1 = cv2.resize(predict, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4) mask = np.uint8(predict1 * 255) _, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY) cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img = cv2.drawContours(img, cnts, -1, (255, 0, 0), 2) cv2_imshow(img)