Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from groq import Groq
|
4 |
+
|
5 |
+
# Initialize Groq API client
|
6 |
+
GROQ_API_KEY = "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"
|
7 |
+
client = Groq(api_key=GROQ_API_KEY)
|
8 |
+
|
9 |
+
# Helper functions
|
10 |
+
def preprocess_data(uploaded_file):
|
11 |
+
data = pd.read_csv(uploaded_file)
|
12 |
+
return data
|
13 |
+
|
14 |
+
def generate_report(data, query):
|
15 |
+
# This should include the retrieval and report generation logic from above
|
16 |
+
return f"Report for query: {query}"
|
17 |
+
|
18 |
+
# Streamlit UI
|
19 |
+
st.title("Energy Usage Analysis Report Generator")
|
20 |
+
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
21 |
+
|
22 |
+
if uploaded_file:
|
23 |
+
data = preprocess_data(uploaded_file)
|
24 |
+
st.write("Dataset Preview:")
|
25 |
+
st.dataframe(data.head())
|
26 |
+
|
27 |
+
query = st.text_input("Enter your query:")
|
28 |
+
if query:
|
29 |
+
report = generate_report(data, query)
|
30 |
+
st.write("Generated Report:")
|
31 |
+
st.text(report)
|