Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
from groq import Groq
|
| 4 |
+
import fitz # PyMuPDF for PDF parsing
|
| 5 |
+
import numpy as np
|
| 6 |
+
import faiss
|
| 7 |
+
from sentence_transformers import SentenceTransformer # Hugging Face transformer
|
| 8 |
+
|
| 9 |
+
# Initialize the Hugging Face model and Groq API client
|
| 10 |
+
model = SentenceTransformer('all-MiniLM-L6-v2') # Model for generating embeddings
|
| 11 |
+
GROQ_API_KEY = "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"
|
| 12 |
+
client = Groq(api_key="GROQ_API_KEY")
|
| 13 |
+
|
| 14 |
+
# Function to extract text from a PDF
|
| 15 |
+
def extract_text_from_pdf(pdf_path):
|
| 16 |
+
doc = fitz.open(pdf_path)
|
| 17 |
+
text = ""
|
| 18 |
+
for page in doc:
|
| 19 |
+
text += page.get_text()
|
| 20 |
+
return text
|
| 21 |
+
|
| 22 |
+
# Function to generate embeddings using Hugging Face model (for text retrieval)
|
| 23 |
+
def generate_huggingface_embeddings(text):
|
| 24 |
+
embeddings = model.encode(text) # Using the SentenceTransformer model
|
| 25 |
+
return embeddings
|
| 26 |
+
|
| 27 |
+
# Function to get relevant chunks from the document using FAISS similarity search
|
| 28 |
+
def get_relevant_chunks(query, top_k=5):
|
| 29 |
+
query_embedding = generate_huggingface_embeddings(query) # Get query embedding
|
| 30 |
+
query_embedding = np.array(query_embedding).reshape(1, -1) # Reshape for FAISS
|
| 31 |
+
|
| 32 |
+
# Perform similarity search in FAISS
|
| 33 |
+
distances, indices = index.search(query_embedding, top_k)
|
| 34 |
+
relevant_chunks = [document_chunks[i] for i in indices[0]]
|
| 35 |
+
return relevant_chunks
|
| 36 |
+
|
| 37 |
+
# Function to generate an answer based on retrieved context and Groq's model
|
| 38 |
+
def generate_answer(query):
|
| 39 |
+
relevant_chunks = get_relevant_chunks(query)
|
| 40 |
+
context = " ".join(relevant_chunks) # Combine the most relevant chunks
|
| 41 |
+
|
| 42 |
+
# Generate the response with Groq's chat model
|
| 43 |
+
chat_completion = client.chat.completions.create(
|
| 44 |
+
messages=[{"role": "user", "content": f"Answer based on this: {context}"}],
|
| 45 |
+
model="llama3-8b-8192", # Adjust with the appropriate Groq model
|
| 46 |
+
stream=False
|
| 47 |
+
)
|
| 48 |
+
return chat_completion.choices[0].message.content
|
| 49 |
+
|
| 50 |
+
# Streamlit app interface
|
| 51 |
+
st.title("Knowledge-Based Assistant")
|
| 52 |
+
st.write("Upload a PDF to generate answers based on its content.")
|
| 53 |
+
|
| 54 |
+
# Upload PDF file
|
| 55 |
+
pdf_file = st.file_uploader("Choose a PDF file", type="pdf")
|
| 56 |
+
|
| 57 |
+
if pdf_file is not None:
|
| 58 |
+
# Extract the text content from the uploaded PDF
|
| 59 |
+
document_text = extract_text_from_pdf(pdf_file)
|
| 60 |
+
|
| 61 |
+
# Split the document into chunks (adjust chunk size as needed)
|
| 62 |
+
chunk_size = 1000 # Size of each chunk of text for embedding
|
| 63 |
+
document_chunks = [document_text[i:i+chunk_size] for i in range(0, len(document_text), chunk_size)]
|
| 64 |
+
|
| 65 |
+
# Generate embeddings for each chunk and store them
|
| 66 |
+
embeddings = [generate_huggingface_embeddings(chunk) for chunk in document_chunks]
|
| 67 |
+
|
| 68 |
+
# Convert embeddings to numpy arrays for FAISS
|
| 69 |
+
embeddings_array = np.array(embeddings)
|
| 70 |
+
|
| 71 |
+
# Initialize FAISS index
|
| 72 |
+
index = faiss.IndexFlatL2(embeddings_array.shape[1]) # L2 distance metric
|
| 73 |
+
|
| 74 |
+
# Add embeddings to the FAISS index
|
| 75 |
+
index.add(embeddings_array)
|
| 76 |
+
|
| 77 |
+
# Query input from user
|
| 78 |
+
query = st.text_input("Ask a question about the document:")
|
| 79 |
+
|
| 80 |
+
if query:
|
| 81 |
+
# Generate the answer based on the query
|
| 82 |
+
answer = generate_answer(query)
|
| 83 |
+
st.write("Answer: ", answer)
|