Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import PyPDF2
|
3 |
+
import faiss
|
4 |
+
import streamlit as st
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from groq import Groq
|
9 |
+
|
10 |
+
# Initialize Groq API
|
11 |
+
client = Groq(api_key=os.environ.get("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"))
|
12 |
+
|
13 |
+
# Function to extract text from PDF
|
14 |
+
def extract_text_from_pdf(pdf_path):
|
15 |
+
text = ""
|
16 |
+
with open(pdf_path, "rb") as file:
|
17 |
+
reader = PyPDF2.PdfReader(file)
|
18 |
+
for page in reader.pages:
|
19 |
+
text += page.extract_text()
|
20 |
+
return text
|
21 |
+
|
22 |
+
# Function to create chunks and embeddings using LangChain
|
23 |
+
def process_text_with_langchain(text):
|
24 |
+
# Split text into chunks
|
25 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
26 |
+
chunk_size=500, chunk_overlap=50
|
27 |
+
)
|
28 |
+
chunks = text_splitter.split_text(text)
|
29 |
+
|
30 |
+
# Create embeddings and FAISS index
|
31 |
+
embeddings = HuggingFaceEmbeddings()
|
32 |
+
vectorstore = FAISS.from_texts(chunks, embeddings)
|
33 |
+
|
34 |
+
return vectorstore, chunks
|
35 |
+
|
36 |
+
# Function to query FAISS index
|
37 |
+
def query_faiss_index(query, vectorstore):
|
38 |
+
docs = vectorstore.similarity_search(query, k=3)
|
39 |
+
results = [doc.page_content for doc in docs]
|
40 |
+
return results
|
41 |
+
|
42 |
+
# Function to interact with Groq LLM
|
43 |
+
def ask_groq(query):
|
44 |
+
chat_completion = client.chat.completions.create(
|
45 |
+
messages=[
|
46 |
+
{
|
47 |
+
"role": "user",
|
48 |
+
"content": query,
|
49 |
+
}
|
50 |
+
],
|
51 |
+
model="llama3-8b-8192",
|
52 |
+
stream=False,
|
53 |
+
)
|
54 |
+
return chat_completion.choices[0].message.content
|
55 |
+
|
56 |
+
# Streamlit app
|
57 |
+
st.title("RAG-Based Chatbot")
|
58 |
+
|
59 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
60 |
+
if uploaded_file is not None:
|
61 |
+
with open("uploaded_file.pdf", "wb") as f:
|
62 |
+
f.write(uploaded_file.read())
|
63 |
+
|
64 |
+
st.info("Processing the PDF...")
|
65 |
+
text = extract_text_from_pdf("uploaded_file.pdf")
|
66 |
+
vectorstore, chunks = process_text_with_langchain(text)
|
67 |
+
|
68 |
+
st.success("PDF processed and indexed successfully!")
|
69 |
+
|
70 |
+
query = st.text_input("Ask a question about the document")
|
71 |
+
if query:
|
72 |
+
st.info("Searching relevant chunks...")
|
73 |
+
relevant_chunks = query_faiss_index(query, vectorstore)
|
74 |
+
context = "\n".join(relevant_chunks)
|
75 |
+
|
76 |
+
st.info("Getting response from the language model...")
|
77 |
+
response = ask_groq(f"Context: {context}\n\nQuestion: {query}")
|
78 |
+
st.success(response)
|