Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import CLIPProcessor, CLIPModel
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# Load the pre-trained CLIP model and processor
|
8 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
9 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
|
10 |
+
|
11 |
+
# Function to make predictions from the image
|
12 |
+
def predict_image_description(image):
|
13 |
+
# Preprocess the image and generate text inputs
|
14 |
+
inputs = processor(text=["a photo of a cat", "a photo of a dog", "a photo of a car", "a photo of a tree", "a photo of a house"],
|
15 |
+
images=image,
|
16 |
+
return_tensors="pt",
|
17 |
+
padding=True)
|
18 |
+
|
19 |
+
# Get model predictions
|
20 |
+
outputs = model(**inputs)
|
21 |
+
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
22 |
+
probs = logits_per_image.softmax(dim=1) # Softmax to get probabilities
|
23 |
+
|
24 |
+
# Return top 3 predictions
|
25 |
+
top_3_probabilities, top_3_indices = torch.topk(probs, 3)
|
26 |
+
labels = ["a cat", "a dog", "a car", "a tree", "a house"]
|
27 |
+
|
28 |
+
predictions = []
|
29 |
+
for i in range(3):
|
30 |
+
prediction = labels[top_3_indices[0][i]] # Get the label
|
31 |
+
probability = top_3_probabilities[0][i].item() # Get probability
|
32 |
+
predictions.append(f"{prediction}: {probability * 100:.2f}%")
|
33 |
+
|
34 |
+
return predictions
|
35 |
+
|
36 |
+
# Streamlit UI
|
37 |
+
st.title("Real-Time Image-to-Text Generator")
|
38 |
+
st.markdown("Upload an image, and I will tell you what it is!")
|
39 |
+
|
40 |
+
# Image upload feature
|
41 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
42 |
+
|
43 |
+
if uploaded_file is not None:
|
44 |
+
# Open the uploaded image
|
45 |
+
image = Image.open(uploaded_file)
|
46 |
+
|
47 |
+
# Display the image
|
48 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
49 |
+
|
50 |
+
# Predict the description
|
51 |
+
predictions = predict_image_description(image)
|
52 |
+
|
53 |
+
# Display the predictions
|
54 |
+
st.write("Predictions:")
|
55 |
+
for prediction in predictions:
|
56 |
+
st.write(prediction)
|